科目: 來源: 題型:
【題目】能夠判別一個四邊形是菱形的條件是( )
A. 一組對角相等且一條對角線平分這組對角 B. 對角線互相平分
C. 對角線互相垂直且相等 D. 對角線相等且互相平分
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與軸交于點,與軸交于點、,點坐標為.
求該拋物線的解析式;
拋物線的頂點為,在軸上找一點,使最小,并求出點的坐標;
點是線段上的動點,過點作,交于點,連接.當的面積最大時,求點的坐標;
若平行于軸的動直線與該拋物線交于點,與直線交于點,點的坐標為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】某市人民廣場上要建造一個圓形的噴水池,并在水池中央垂直安裝一個柱子,柱子頂端處裝上噴頭,由處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知米,噴出的水流的最高點距水平面的高度是米,離柱子的距離為米.
求這條拋物線的解析式;
若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,已知點D在AB上,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,且M為EC的中點.
(1)連接DM并延長交BC于N,求證:CN=AD;
(2)求證:△BMD為等腰直角三角形;
(3)將△ADE繞點A逆時針旋轉(zhuǎn)90°時(如圖②所示位置),其它條件不變,△BMD為等腰直角三角形的結(jié)論是否仍成立?若成立,請證明:若不成立,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在下面直角坐標系中,已知,,三點,其中、、滿足關(guān)系式,.
(1)求、、的值;
(2)如果在第二象限內(nèi)有一點,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積與的面積相等?若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖是二次函數(shù)的圖象,其頂點坐標為.
求出圖象與軸的交點,的坐標;
在二次函數(shù)的圖象上是否存在點,使?若存在,求出點的坐標;若不存在,請說明理由;
將二次函數(shù)的圖象在軸下方的部分沿軸翻折,圖象的其余部分保持不變,得到一個新的圖象,請你結(jié)合這個新的圖象回答:當直線與此圖象有兩個公共點時,的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】高爾夫球手基礎(chǔ)的高爾夫球的運動路線是一條拋物線,當球水平運動了時達到最高點.落球點比擊球點的海拔低,水平距離為.
建立適當?shù)淖鴺讼,求高?/span>關(guān)于水平距離的二次函數(shù)式;
與擊球點相比,運動到最高點時有多高?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC位于第二象限,點A的坐標是(﹣2,3),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于x軸對稱的△A2B2C2 .
(1)在圖中畫出△A1B1C1和△A2B2C2 ;
(2)點A2的坐標為 ;
(3)求△ABC的周長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=38°,D,E分別為AB,AC上一點,將△BCD,△ADE沿CD,DE翻折,點A,B恰好重合于點P處,則∠ACP=_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com