相關(guān)習(xí)題
 0  357500  357508  357514  357518  357524  357526  357530  357536  357538  357544  357550  357554  357556  357560  357566  357568  357574  357578  357580  357584  357586  357590  357592  357594  357595  357596  357598  357599  357600  357602  357604  357608  357610  357614  357616  357620  357626  357628  357634  357638  357640  357644  357650  357656  357658  357664  357668  357670  357676  357680  357686  357694  366461 

科目: 來源: 題型:

【題目】如圖所示,ABC中,ABAC,∠B36°,D、EBC上兩點,且∠ADE=∠AED2BAD,則圖中等腰三角形共有( 。

A.3B.4C.5D.6

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ADBC,若∠DAB的平分線AECDE,連接BE,且BE恰好平分∠ABC,則AB的長與AD+BC的大小關(guān)系是(  )

A.ABAD+BCB.ABAD+BCC.ABAD+BCD.無法確定

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,是全國最大的瓷碗造型建筑坐落于江西景德鎮(zhèn),整體造型概念來自“宋代影青斗笠碗”,造型莊重典雅,象征“萬瓷之母”.小敏為了計算該建筑物的橫斷面(瓷碗橫斷面ABCD為等腰梯形)的高度如圖2,她站在與瓷碗底部AB位于同一水平面的點P處測得瓷碗頂部點D的仰角為45°,而后沿著一段坡度為0.44的小坡PQ步行到點Q(此過程中AD、AP、PQ始終處于同一平面)后測得點D的仰角減少了5°

已知坡PQ的水平距離為20米,小敏身高忽略不計.

1試計算該瓷碗建筑物的高度?

2小敏測得AD與水平面夾角約為58°,底座直徑AB約為20米,試計算碗口CD的直徑為多少米?

坡度:坡與水平線夾角的正切值.

參考數(shù)據(jù):sin40°≈0.64,tan40°≈0.84,sin58°≈0.85,tan58°≈1.60

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在扇形OAB中,COA的中點,CDOA,CD與弧AB交于點D,以O為圓心,OC的長為半徑作弧CEOB于點E,若OA=6,AOB=120°,則圖中陰影部分的面積為_________(結(jié)果保留π).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一次函數(shù)y=2x﹣4x軸交于點A,與y軸交于點E,過點AAE的垂線交y軸于點B,連接AB,以AB為邊向上作正方形ABCD(如圖所示),則點D的坐標(biāo)為__________

查看答案和解析>>

科目: 來源: 題型:

【題目】一個尋寶游戲的尋寶通道如圖①所示,通道由在同一平面內(nèi)的AB,BC,CA,OA, OB,OC組成。為記錄尋寶者的行進路線,在BC的中點M處放置了一臺定位儀器,設(shè)尋寶者行進的時間為x,尋寶者與定位儀器之間的距離為y,若尋寶者勻速行進,且表示y與x的函數(shù)關(guān)系的圖像大致如圖②所示,則尋寶者的行進路線可能為:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目: 來源: 題型:

【題目】下列說法正確的是

A.一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎

B.為了了解全國中學(xué)生的心理健康狀況,應(yīng)采用普查的方式

C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1

D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目: 來源: 題型:

【題目】在平行四邊形ABCD中,ACBD相交于0AEBDE,CFBDF,則圖中的全等三角形共(  )

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3x軸交于A(﹣3,0)、B(1,0)兩點,與y軸交于點C,連接AC..

(1)請求出拋物線y=ax2+bx+3的解析式;

(2)如圖2,點P、點Q同時從點A出發(fā),點P沿AC以每秒個單位長度的速度,由點A向點C運動;點Q沿AB以每秒2個單位長度的速度,由點A向點B運動;當(dāng)一個點停止運動時,另一個點也隨之停止運動,設(shè)點P的運動時間為t秒,連接PQ.

①求證:PQAC;

②過點QQEx軸,交拋物線于點E,連接PE,當(dāng)PQ=PE時,請求出t的值;

③在y軸上是否存在點D,使以點A、P、Q、D為頂點的四邊形是平行四邊形?若存在,直接寫出D點坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(﹣40),點Cy軸正半軸上的一點,且∠ACB90°,ACBC

1)如圖①,若點B在第四象限,C02),求點B的坐標(biāo);

2)如圖②,若點B在第二象限,以OC為直角邊在第一象限作等腰RtCOF,連接BF,交y軸于點M,求CM的長.

查看答案和解析>>

同步練習(xí)冊答案