相關(guān)習(xí)題
 0  353116  353124  353130  353134  353140  353142  353146  353152  353154  353160  353166  353170  353172  353176  353182  353184  353190  353194  353196  353200  353202  353206  353208  353210  353211  353212  353214  353215  353216  353218  353220  353224  353226  353230  353232  353236  353242  353244  353250  353254  353256  353260  353266  353272  353274  353280  353284  353286  353292  353296  353302  353310  366461 

科目: 來(lái)源: 題型:

【題目】某城市按以下規(guī)定收取每月的水費(fèi),用水不超過(guò)7噸,按每噸1.5元收費(fèi);若超過(guò)7噸,未超過(guò)部分仍按每噸1.5元收取,而超過(guò)部分則按每噸2.3元收費(fèi).

1)如果某用戶5月份水費(fèi)平均為每噸1.6元,那么該用戶5月份應(yīng)交水費(fèi)多少元?

2)如果某用戶5月份交水費(fèi)17.4元,那么該用戶5月份水費(fèi)平均每噸多少元?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,將ABD沿AD折疊得到AED,點(diǎn)E落在CD上,∠B=50°,∠C=30°

1)填空:∠BAD= 度;

2)求∠CAE的度數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】把棱長(zhǎng)為1cm的若干個(gè)小正方體擺放如圖所示的幾何體,然后在露出的表面上涂上顏色不含底面

該幾何體中有多少小正方體?

畫(huà)出主視圖.

求出涂上顏色部分的總面積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線段EF的長(zhǎng)度;若變化,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過(guò)C點(diǎn)的切線,垂足為D,AB的延長(zhǎng)線交直線CD于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長(zhǎng);

(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.

【答案】(1)證明見(jiàn)解析;(2)CF=;(3) sinE=.

【解析】分析:(1)連接OC,由平行線的判定定理、性質(zhì)以及三角形中的等角對(duì)等邊的原理即可求證。(2)由(1)中結(jié)論,利用特殊角的三角函數(shù)值可求出∠E=30CF的長(zhǎng)度。(3)連接OC,即可證得△OCG∽△DAG,△OCE∽△DAE,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得EOAO的比例關(guān)系,又因?yàn)?/span>OC=OA,所以在RT△OCE中由三角函數(shù)的定義即可求解。

本題解析:(1)連接OC,如圖①.∵OC切半圓O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.

(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.

∴在Rt△OCF中,CF=OC·sin60°=2×.

(3)連接OC,如圖②.∵CO∥AD,∴△CGO∽△AGD.∴.不妨設(shè)CO=AO=3k,則AD=4k.又△COE∽△DAE,∴.∴EO=9k.在Rt△COE中,sinE=.

型】解答
結(jié)束】
25

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,BE平分∠ABCAC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】計(jì)算:

(1)3()()();

(2)25.7(7.3)(13.7)7.3;

(3)(2.125)()()(3.2);

(4)(0.8)6.4(9.2)3.6(1)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】“九宮圖”傳說(shuō)是遠(yuǎn)古時(shí)代洛河中的一個(gè)神龜背上的圖案,故又稱“龜背圖”,中國(guó)古代數(shù)學(xué)史上經(jīng)常研究這一神話。

⑴現(xiàn)有1,2,3,4,5,6,7,8,9共九個(gè)數(shù)字,請(qǐng)將它們分別填入圖1的九個(gè)方格中,使得每行的三個(gè)數(shù)、每列的三個(gè)數(shù)、斜對(duì)角的三個(gè)數(shù)之和都等于15.

⑵通過(guò)研究問(wèn)題⑴,利用你發(fā)現(xiàn)的規(guī)律,將3,5,-7,1,7,-3,9,-5,-1

這九個(gè)數(shù)字分別填入圖2的九個(gè)方格中,使得橫、豎、斜對(duì)角的所有三個(gè)數(shù)的和都相等.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C表示某旅游景區(qū)三個(gè)纜車站的位置,線段AB,BC表示連接纜車站的鋼纜,已知A,B,C三點(diǎn)在同一鉛直平面內(nèi),它們的海拔高度AA′,BB′,CC′分別為110米,310米,710米,鋼纜AB的坡度i1=1∶2,鋼纜BC的坡度i2=1∶1,景區(qū)因改造纜車線路,需要從A到C直線架設(shè)一條鋼纜,那么鋼纜AC的長(zhǎng)度是多少米?(注:坡度i是指坡面的鉛直高度與水平寬度的比)

【答案】鋼纜AC的長(zhǎng)度為1 000米.

【解析】試題分析:過(guò)點(diǎn)AAE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過(guò)點(diǎn)BBD⊥CC′于點(diǎn)D,分別求出AE、CE,利用勾股定理求解AC即可.

試題解析:過(guò)點(diǎn)AAE⊥CC′于點(diǎn)E,交BB′于點(diǎn)F,過(guò)點(diǎn)BBD⊥CC′于點(diǎn)D,

△AFB、△BDC△AEC都是直角三角形,四邊形AA′B′F,BB′C′DBFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200,

CD=CC′-C′D=CC′-BB′=710-310=400

∵i1=12,i2=11,

∴AF=2BF=400,BD=CD=400,

∵EF=BD=400,DE=BF=200

∴AE=AF+EF=800,CE=CD+DE=600,

RtAEC中,AC=(米).

答:鋼纜AC的長(zhǎng)度是1000米.

考點(diǎn):解直角三角形的應(yīng)用-坡度坡角問(wèn)題.

型】解答
結(jié)束】
24

【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點(diǎn),AD垂直于過(guò)C點(diǎn)的切線,垂足為D,AB的延長(zhǎng)線交直線CD于點(diǎn)E.

(1)求證:AC平分∠DAB;

(2)若AB=4,B為OE的中點(diǎn),CF⊥AB,垂足為點(diǎn)F,求CF的長(zhǎng);

(3)如圖②,連接OD交AC于點(diǎn)G,若,求sinE的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】觀察下圖并填表(單位

梯形個(gè)數(shù)

n

圖形周長(zhǎng)

······

請(qǐng)通過(guò)計(jì)算說(shuō)明第個(gè)圖形的周長(zhǎng)比第個(gè)圖形的周長(zhǎng)多多少?

類比推理,直角三角形的三邊長(zhǎng)分別是,請(qǐng)直接寫(xiě)出增加到第個(gè)直角三角形時(shí),所得圖形的周長(zhǎng)為 .

查看答案和解析>>

同步練習(xí)冊(cè)答案