科目: 來源: 題型:
【題目】如圖,在平行四邊形OABC中,已知點A、C兩點的坐標(biāo)為A (,),C (2,0).
(1)求點B的坐標(biāo).
(2)將平行四邊形OABC向左平移個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標(biāo).
(3)求平行四邊形OABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和B為圓心,以相同的長(大于 AB)為半徑作弧,兩弧相交于點M和N,作直線MN交AB于點D,交BC于點E,連接CD,下列結(jié)論錯誤的是( )
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場在世界杯足球比賽期間舉行促銷活動,并設(shè)計了兩種方案:一種是以商品價格的九五折優(yōu)惠的方式進(jìn)行銷售;一種是采用有獎銷售的方式,具體措施是:①有獎銷售自2009年6月9日起,發(fā)行獎券10000張,發(fā)完為止;②顧客累計購物滿400元,贈送獎券一張(假設(shè)每位顧客購物每次都恰好湊足400元);③世界杯后,顧客持獎券參加抽獎;④獎項是:特等獎2名,各獎3000元獎品;一等獎10名,各獎1000元獎品;二等獎20名,各獎300元獎品;三等獎100名,各獎100元獎品;四等獎200名,各獎50元獎品;紀(jì)念獎5000名,各獎10元獎品,試就商場的收益而言,對兩種促銷方法進(jìn)行評價,選用哪一種更為合算?
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)將組織七年級學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜.
(1)兩同學(xué)向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說:“公司有45座和60座兩種型號的客車可供租用,60座的客車每輛每天的租金比45座的貴100元.”王老師說:“我們學(xué)校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎”甲、乙兩同學(xué)想了一下,都說知道了價格.
聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?
(2)公司經(jīng)理問:“你們準(zhǔn)備怎樣租車”,甲同學(xué)說:“我的方案是只租用45座的客車,可是會有一輛客車空出30個座位”;乙同學(xué)說“我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車”,王老師在﹣旁聽了他們的談話說:“從經(jīng)濟(jì)角度考慮,還有別的方案嗎”?如果是你,你該如何設(shè)計租車方案,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)探究:如圖①,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=40°,求∠DEF的度數(shù).
請將下面的解答過程補充完整,并填空(理由或數(shù)學(xué)式)
解:∵DE∥BC,∴∠DEF= .( 。
∵EF∥AB,∴ =∠ABC.( 。
∴∠DEF=∠ABC.(等量代換)
∵∠ABC=40°,∴∠DEF= °.
(2)應(yīng)用:如圖②,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB的延長線上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=60°,則∠DEF= °.
查看答案和解析>>
科目: 來源: 題型:
【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點D在AB的延長線或反向延長線上時,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com