【題目】如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),,DHAB于點(diǎn)HAC分別交BD、DHEF

1)已知AB10,AD6,求AH

2)求證:DFEF

【答案】1AD3.6;(2)見解析

【解析】

(1)證明DAB∽△HAD,可得=,由此構(gòu)建方程即可解決問題;

(2)利用等角的余角相等,證明∠DEF=DEF即可.

(1)AB是⊙O的直徑,

∴∠ADB=90°

DHAB,

∴∠DHA=ADB=90°

又∵∠DAB=HAD,

∴△DAB∽△HAD,

=,即=,

AD=3.6

(2)=,

∴∠DAC=DBA

DHAB

∴∠FDE+B=90°,

∵∠ADB=90°,

∴∠DEF+DAC=90°,

∴∠DEF=DEF

DF=EF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線分別是的對邊。

1)求證:該拋物線與軸必有兩個(gè)交點(diǎn);

2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)為,頂點(diǎn)為 ,已知的周長為,求拋物線的解析式;

3)設(shè)直線與拋物線交于點(diǎn),與軸交于點(diǎn),拋物線與軸交于點(diǎn),若拋物線的對稱軸為的面積之比為,試判斷三角形的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P1,2.5)、Qmn)在函數(shù)yx0)的圖象上,當(dāng)m1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、DQDPA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積( 。

A. 增大B. 先增大后減小

C. 先減小后增大D. 減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對稱軸為直線l,則下列結(jié)論:abc0;a+b+c0a+c0;a+b0,正確的是( 。

A. ①②④B. ②④C. ①③D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,AC=6,BC=8,DAB邊的中點(diǎn),PBC邊上一動(dòng)點(diǎn)(點(diǎn)P不與B、C重合),若以DC、P為頂點(diǎn)的三角形與ABC相似,則線段PC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育老師隨機(jī)抽取了九年級(jí)甲、乙兩班部分學(xué)生進(jìn)行一分鐘跳繩的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:

分組

頻數(shù)

頻率

第一組(0x<120)

3

0.15

第二組(120x<160)

8

a

第三組(160x<200)

7

0.35

第四組(200x<240)

b

0.1

(1)頻數(shù)分布表中a____,b_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)如果該校九年級(jí)共有學(xué)生360人,估計(jì)跳繩能夠一分鐘完成160160次以上的學(xué)生有多少人?

(3)已知第一組中有兩個(gè)甲班學(xué)生,第四組中只有一個(gè)甲班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談測試體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為,,點(diǎn)MAO中點(diǎn),的半徑為2

是直角三角形,則點(diǎn)P的坐標(biāo)為______直接寫出結(jié)果

,則BP有怎樣的位置關(guān)系?為什么?

若點(diǎn)E的坐標(biāo)為,那么上是否存在一點(diǎn)P,使最小,如果存在,求出這個(gè)最小值,如果不存在,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線lCx軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PFx軸于F,設(shè)四邊形OFPC的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Qx軸的正半軸上運(yùn)動(dòng),過Qy軸的平行線,交直線lM,交拋物線于N,連接CN,將CMN沿CN翻轉(zhuǎn),M的對應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案