【題目】如圖,AB是半圓O的直徑,C是半圓上一點(diǎn),,DH⊥AB于點(diǎn)H,AC分別交BD、DH于E、F.
(1)已知AB=10,AD=6,求AH.
(2)求證:DF=EF
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線分別是中的對邊。
(1)求證:該拋物線與軸必有兩個(gè)交點(diǎn);
(2)設(shè)拋物線與軸的兩個(gè)交點(diǎn)為,頂點(diǎn)為 ,已知的周長為,求拋物線的解析式;
(3)設(shè)直線與拋物線交于點(diǎn),與軸交于點(diǎn),拋物線與軸交于點(diǎn),若拋物線的對稱軸為與的面積之比為,試判斷三角形的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P(1,2.5)、Q(m,n)在函數(shù)y=(x>0)的圖象上,當(dāng)m>1時(shí),過點(diǎn)P分別作x軸、y軸的垂線,垂足為點(diǎn)A,B;過點(diǎn)Q分別作x軸、y軸的垂線,垂足為點(diǎn)C、D.QD交PA于點(diǎn)E,隨著m的增大,四邊形ACQE的面積( )
A. 增大B. 先增大后減小
C. 先減小后增大D. 減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),對稱軸為直線l,則下列結(jié)論:①abc>0;②a+b+c>0;③a+c>0;④a+b>0,正確的是( )
A. ①②④B. ②④C. ①③D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB邊的中點(diǎn),P是BC邊上一動(dòng)點(diǎn)(點(diǎn)P不與B、C重合),若以D、C、P為頂點(diǎn)的三角形與△ABC相似,則線段PC=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育老師隨機(jī)抽取了九年級甲、乙兩班部分學(xué)生進(jìn)行一分鐘跳繩的測試,并對成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請你根據(jù)圖表中的信息完成下列問題:
分組 | 頻數(shù) | 頻率 |
第一組(0≤x<120) | 3 | 0.15 |
第二組(120≤x<160) | 8 | a |
第三組(160≤x<200) | 7 | 0.35 |
第四組(200≤x<240) | b | 0.1 |
(1)頻數(shù)分布表中a=____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校九年級共有學(xué)生360人,估計(jì)跳繩能夠一分鐘完成160或160次以上的學(xué)生有多少人?
(3)已知第一組中有兩個(gè)甲班學(xué)生,第四組中只有一個(gè)甲班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談測試體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為,,點(diǎn)M是AO中點(diǎn),的半徑為2.
若是直角三角形,則點(diǎn)P的坐標(biāo)為______直接寫出結(jié)果
若,則BP與有怎樣的位置關(guān)系?為什么?
若點(diǎn)E的坐標(biāo)為,那么上是否存在一點(diǎn)P,使最小,如果存在,求出這個(gè)最小值,如果不存在,簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請求出立柱BH的長.(結(jié)果精確到0.1米, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+2x+3與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).
(1)寫出D的坐標(biāo)和直線l的解析式;
(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com