【題目】因式分解:
(1)yx;
(2)(x2)(x4)+-4.
(3)(x24y2)216x2y2
(4)(p4)(p1)6.
【答案】(1)xy(x+y)(xy)(2)2(x+2)(x+1)(3) (x2y)2(x-2y)2(4) (p2)(p-1)
【解析】
(1)首先提公因式xy,再利用平方差進行二次分解即可;
(2)首先把后兩項利用平方差進行分解,再提公因式x+2,然后化簡即可;
(3)先根據(jù)平方差公式進行因式分解,再根據(jù)完全平方公式即可求解;
(4)先根據(jù)整式的乘法進行運算,再根十字相乘法因式分解.
(1)yx
=xy(x2y2),
=xy(x+y)(xy)
(2)(x2)(x4)+-4.
=(x+2)(x+4)+(x+2)(x2),
=(x+2)(x+4+x2),
=(x+2)(2x+2),
=2(x+2)(x+1)
(3)(x24y2)216x2y2
=(x24y2+4xy) (x24y2-4xy)
=(x2y)2(x-2y)2
(4)(p4)(p1)6
=p2+p-4p-4+6
= p2-3p+2
=(p2)(p-1).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當(dāng)AB=8,CE=2時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=30°,CD、BE交于點O,連接OA
(1) 如圖1,求證:△ABE≌△ACD
(2) 如圖1,求∠AOE的大小
(3) 當(dāng)繞點A旋轉(zhuǎn)至如圖2所示位置時,若∠BAC=∠DAE=α,∠AOE=_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
請結(jié)合圖中所給信息解答下列問題:
(1)本次共調(diào)查 名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有多少名?
(4)通過此次調(diào)查,數(shù)學(xué)課外實踐小組的學(xué)生對交通法規(guī)有了更多的認識,學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC, ∠BAC=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的點,且DE⊥DF.
(1)判斷DE和DF的數(shù)量關(guān)系,并說明理由;
(2)若BE=12,CF=5,求△DEF的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )
A. 80°B. 90°
C. 100°D. 110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2)
(1)請寫出△ABC關(guān)于x軸對稱的點A1、B1、C1的坐標(biāo);
(2)請在這個坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2;
(3)計算:△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔C的北偏東45方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達位于燈塔C的南偏東30°方向上的B處,求此時船距燈塔的距離(參考數(shù)據(jù):≈1.414,≈1.732,結(jié)果取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別是A(6,0)、B(0,2),在AB的右上方有一點C,使△ABC是以AB為斜邊的直角三角形.
(1)若點C坐標(biāo)為(x,y),請在圖1中作一點C(點A除外),使x+y=6;
(2)設(shè)點C坐標(biāo)為(x,y),請在圖2中作一點C,使x+y的值最大,并求出x+y的最大值.
請利用沒有刻度的直尺和圓規(guī)作出符合條件的點C.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進行標(biāo)注)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com