【題目】如圖,已知直線y=x+1y軸交于點A,與x軸交于點D,拋物線y= x2+bx+c與直線交于A、E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).在拋物線的對稱軸上找一點M,使|AM﹣MC|的值最大,求出點M的坐標__________.

【答案】

【解析】分析:易得點A(0,1),那么把A,B坐標代入y=x2+bx+c即可求得函數(shù)解析式,然后求出對稱軸,找到C關(guān)于對稱軸的對稱點B,連接AB交對稱軸的一點就是M.應讓過AB的直線解析式和對稱軸的解析式聯(lián)立即可求得點M坐標.

詳解: (1)將A(0,1)、B(1,0)坐標代入y=x2+bx+c,

,

解得

∴拋物線的解折式為y=x2-x+1;

∴拋物線的對稱軸為x=

B、C關(guān)于x=對稱,

MC=MB,

要使|AM-MC|最大,即是使|AM-MB|最大,

由三角形兩邊之差小于第三邊得,當A、B、M在同一直線上時|AM-MB|的值最大.

易知直線AB的解析式為y=-x+1

∴由,

M(,-).

點睛: 本題綜合考查了待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)的性質(zhì),直線和拋物線的交點,求兩條線段和或差的最值,要考慮做其中一點關(guān)于所求的點在的直線的對稱點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某服裝超市購進單價為30元的童裝若干件,物價部門規(guī)定其銷售單價不低于每件30元,不高于每件60元.銷售一段時間后發(fā)現(xiàn):當銷售單價為60元時,平均每月銷售量為80件,而當銷售單價每降低10元時,平均每月能多售出20件.同時,在銷售過程中,每月還要支付其他費用450元.設(shè)銷售單價為x元,平均月銷售量為y件.

1)求出yx的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

2)當銷售單價為多少元時,銷售這種童裝每月可獲利1800元?

3)當銷售單價為多少元時,銷售這種童裝每月獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是(  )

A. 24° B. 30° C. 32° D. 36°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在同一平面內(nèi),將兩個全等的等腰直角三角形ABCAFG擺放在一起,A為公共頂點,∠BAC=AGF=90°,AB=4.ABC固定不動,AFG繞點A旋轉(zhuǎn),AF、AG與邊BC的交點分別為DE(D不與點B重合,點E不與點C重合).

(1)求證:ABEDCA;

(2)BE·CD=kk為常數(shù)),求k的值;

(3)在旋轉(zhuǎn)過程中,當AFG旋轉(zhuǎn)到如圖2的位置時,AGBC交于點E,AF的延長線與CB的延長線交于點D,那么(2)中k的值是否發(fā)生了變化?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)ymxm和函數(shù)ymx22x2 (m是常數(shù),且m≠0)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°D是邊AC上的一點,連接BD,使∠A=2∠1EBC上的一點,以BE為直徑的⊙O經(jīng)過點D

1)求證:AC⊙O的切線;

2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB的長度為2,AB所在直線上方存在點C,使得ABC為等腰三角形,設(shè)ABC的面積為S.S___________時,滿足條件的點C恰有三個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,D是弧的中點,過點DDEACAC的延長線于點E

1)求證:DEO的切線;

2)當AB10,AC時,求弧的長;

3)當AB20時,直接寫出ABC面積最大時,點D到直徑AB的距離.

查看答案和解析>>

同步練習冊答案