【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π)
【答案】(1)證明見試題解析;(2).
【解析】試題分析:(1)由OD=OB得∠1=∠ODB,則根據三角形外角性質得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,則可根據切線的判定定理得到AC是⊙O的切線;
(2)由∠A=60°得到∠C=30°,∠DOC=60°,根據含30度的直角三角形三邊的關系得CD=2,然后利用陰影部分的面積=S△COD﹣S扇形DOE和扇形的面積公式求解.
試題解析:(1)證明:∵OD=OB,
∴∠1=∠ODB,
∴∠DOC=∠1+∠ODB=2∠1,
∵∠A=2∠1,
∴∠DOC=∠A,
∵∠A+∠C=90°,
∴∠DOC+∠C=90°,
∴OD⊥DC,
∴AC是⊙O的切線;
(2)解:∵∠A=60°,
∴∠C=30°,∠DOC=60°,
在Rt△DOC中,OD=2,
∴CD=OD=2,
∴陰影部分的面積=S△COD﹣S扇形DOE
=×2×2﹣=.
科目:初中數(shù)學 來源: 題型:
【題目】重慶是一座美麗的山坡,某中學依山而建,校門A處,有一斜坡AB,長度為13米,在坡頂B處看教學樓CF的樓頂C的仰角∠CBF=53°,離B點4米遠的E處有一花臺,在E處仰望C的仰角∠CEF=63.4°,CF的延長線交校門處的水平面于D點,F(xiàn)D=5米.
(1)求斜坡AB的坡度i;(2)求DC的長.(參考數(shù)據:tan53°≈,tan63.4°≈2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB的垂直平分線DE交AC于D,垂足為E,若∠A=30°,CD=3.
(1)求∠BDC的度數(shù).
(2)求AC的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的兩邊BC,AB分別在平面直角坐標系的x軸、y軸的正半軸上,正方形A′B′C′D′與正方形ABCD是以AC的中點O′為中心的位似圖形,已知AC=3,若點A′的坐標為(1,2),則正方形A′B′C′D′與正方形ABCD的相似比是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的內部點 A′的位置,試說明 2∠A=∠1+∠2;
(2)如圖②,若把△ABC 紙片沿 DE 折疊,使點 A 落在四邊形 BCED 的外部點A′的位置,寫出∠A 與∠1、∠2 之間的等量關系(無需說明理由);
(3)如圖③,若把四邊形 ABCD 沿 EF 折疊,使點 A、D 落在四邊形BCFE 的內部點 A′、D′的位置,請你探索此時∠A、∠D、∠1 與∠2 之間的數(shù)量關系,寫出你發(fā)現(xiàn)的結論并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算張老師在黑板上寫了三個算式,希望同學們認真觀察,發(fā)現(xiàn)規(guī)律.
請你結合這些算式,解答下列問題:
(1)請你再寫出另外兩個符合上述規(guī)律的算式;
(2)驗證規(guī)律:設兩個連續(xù)奇數(shù)為2n+1,2n–1(其中n為正整數(shù)),則它們的平方差是8的倍數(shù);
(3)拓展延伸:“兩個連續(xù)偶數(shù)的平方差是8的倍數(shù)”,這個結論正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:22﹣21=2×21﹣1×21=2( )
23﹣22= =2( ),
24﹣23= =2( ),
……
(1)請仔細觀察,寫出第4個等式;
(2)請你找規(guī)律,寫出第n個等式;
(3)計算:21+22+23+…+22019﹣22020.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC,AF⊥CD,垂足分別為E,F(xiàn),且BE=DF.
(1)求證:ABCD是菱形;
(2)若AB=5,AC=6,求ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com