【題目】在矩形ABCD中,AB=4,BC=6,動(dòng)點(diǎn)P為矩形邊上的一點(diǎn),點(diǎn)P沿著B﹣C的路徑運(yùn)動(dòng)(含點(diǎn)B和點(diǎn)C),則△ADP的外接圓的圓心O的運(yùn)動(dòng)路徑長(zhǎng)是_____.
【答案】
【解析】分析:如圖,連接AC、BD交于點(diǎn)O′.當(dāng)點(diǎn)P與B或C重合時(shí),△PAD的外接圓的圓心與O′重合,當(dāng)PA=PD時(shí),設(shè)△PAD的外接圓的圓心為O,PO的延長(zhǎng)線交AD于E,設(shè)PO=OD=x,因?yàn)?/span>△PAD的外心在線段AD的垂直平分線上,
觀察圖象可知,點(diǎn)P沿著B-C的路徑運(yùn)動(dòng),△ADP的外接圓的圓心O的運(yùn)動(dòng)路徑長(zhǎng)是2OO′,由此即可解決問(wèn)題;
詳解:如圖,連接AC、BD交于點(diǎn)O′.
當(dāng)點(diǎn)P與B或C重合時(shí),△PAD的外接圓的圓心與O′重合,
當(dāng)PA=PD時(shí),設(shè)△PAD的外接圓的圓心為O,PO的延長(zhǎng)線交AD于E,設(shè)PO=OD=x,
Rt△ODE中,∵OD2=OE2+DE2,
∴x2=(4-x)2+32,
解得x=,
∴OE=4-=,
∵O′B=O′D,AE=DE,
∴O′E=AB=2,
∴OO′=O′E-OE=,
∵△PAD的外心在線段AD的垂直平分線上,
觀察圖象可知,點(diǎn)P沿著B-C的路徑運(yùn)動(dòng),△ADP的外接圓的圓心O的運(yùn)動(dòng)路徑長(zhǎng)是2OO′=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一水池有兩個(gè)進(jìn)水口,一個(gè)出水口,一個(gè)水口在單位時(shí)間內(nèi)的進(jìn)、出水量如圖(a)、(b)所示,某天從0點(diǎn)到6點(diǎn),該水池的蓄水量如圖(c)所示,給出以下3個(gè)論斷:①0點(diǎn)到3點(diǎn)只進(jìn)水不出水;②3點(diǎn)到4點(diǎn)不進(jìn)水只出水;③4點(diǎn)到6點(diǎn)一定不進(jìn)水不出水.則正確的論斷是________.(填上所有正確論斷的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解成都市初中學(xué)生“數(shù)學(xué)核心素養(yǎng)”的掌握情況,教育科學(xué)院命題教師赴某校初三年級(jí)進(jìn)行調(diào) 研,命題教師將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿分 160 分)分為 5 組:第一組 85~100;第二組100~115;第三組 115~130;第四組 130~145;第五組 145~160,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖,觀察圖形的信息,回答下列問(wèn)題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)多少名學(xué)生?成績(jī)?yōu)榈谖褰M的有多少名學(xué)生?
(2)針對(duì)考試成績(jī)情況,現(xiàn)各組分別派出1名代表(分別用 A、B、C、D、E 表示5個(gè)小組中選出來(lái)的同學(xué)),命題教師從這5名同學(xué)中隨機(jī)選出兩名同學(xué)談?wù)勛鲱}的感想,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名同學(xué)剛好來(lái)自第一、五組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,點(diǎn)P從點(diǎn)A出發(fā)沿AB→BC→CD以3cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)A出發(fā)沿AD以1cm/s的速度向終點(diǎn)D勻速運(yùn)動(dòng),設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為ts,△APQ的面積為Scm2,下列選項(xiàng)中能表示S與t之間函數(shù)關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,軸,垂足為.反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),交于點(diǎn).已知,.
(1)若,求k的值;
(2)連接,若,求的長(zhǎng).
(3)連接,若是鈍角,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,有一個(gè)等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,得到等腰直角三角形A2017OB2017.則點(diǎn)B2017的坐標(biāo)_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(3,1),點(diǎn)C(0,4),頂點(diǎn)為點(diǎn)M,過(guò)點(diǎn)A作AB∥ x軸,交y軸于點(diǎn)D,交該二次函數(shù)圖象于點(diǎn)B,連結(jié)BC.
(1)求該二次函數(shù)的解析式及點(diǎn)M的坐標(biāo);
(2)若將該二次函數(shù)圖象向下平移m(m>0)個(gè)單位,使平移后得到的二次函數(shù)圖象的頂點(diǎn)落在△ ABC的內(nèi)部(不包括△ ABC的邊界),求m的取值范圍;
(3)點(diǎn)P是直線AC上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△ BCD相似,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果,不必寫(xiě)過(guò)程).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com