【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)結(jié)論:四邊形ACDF是矩形.理由見解析.
【解析】
(1)只要證明AB=CD,AF=CD即可解決問題;
(2)結(jié)論:四邊形ACDF是矩形.根據(jù)對角線相等的平行四邊形是矩形判斷即可;
(1)證明:∵四邊形ABCD是平行四邊形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:結(jié)論:四邊形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四邊形ACDF是平行四邊形,
∵四邊形ABCD是平行四邊形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等邊三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四邊形ACDF是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,小彬從該網(wǎng)店購買了3筒甲種羽毛球和2筒乙種羽毛球,一共花費270元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)消費者需求,該網(wǎng)店決定購進甲、乙兩種羽毛球各80筒.已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.元旦期間該網(wǎng)店開展優(yōu)惠促銷活動,甲種羽毛球打折銷售,乙種羽毛球售價不變,若所購進羽毛球均可全部售出,要使全部售出所購進的羽毛球的利潤率是,那么甲種羽毛球是按原銷售價打幾折銷售的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】安岳是有名的“檸檬之鄉(xiāng)”,某超市用3000元進了一批檸檬銷售良好;又用7700元購來一批檸檬,但這次的進價比第一批高了10%,購進數(shù)量是第一批的2倍多500斤.
(1)第一批檸檬的進價是每斤多少元?
(2)為獲得更高利潤,超市決定將第二批檸檬分成大果子和小果子分別包裝出售,大果子的售價是第一批檸檬進價的2倍,小果子的售價是第一批檸檬進價的1.2倍.問大果子至少要多少斤才能使第二批檸檬的利潤不低于3080元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形OABC,點C在x軸上,直線y=x經(jīng)過點A,菱形OABC的邊長是,若反比例函數(shù)y=的圖象經(jīng)過點B,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,BC=6,動點P為矩形邊上的一點,點P沿著B﹣C的路徑運動(含點B和點C),則△ADP的外接圓的圓心O的運動路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是邊BC的中點,點E在△ABC內(nèi),AE平分∠BAC,CE⊥AE,點F在邊AB上,EF∥BC.
(1)求證:四邊形BDEF是平行四邊形;
(2)線段BF、AB、AC的數(shù)量之間具有怎樣的關(guān)系?證明你所得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近段時間共享單車風(fēng)靡全國,刺激了自行車生產(chǎn)廠家,某廠家準(zhǔn)備生產(chǎn)兩種型號的共享單車,已知生產(chǎn)6輛型單車與5輛型單車的成本相同,生產(chǎn)3輛型單車與2輛型單車共需1080元。
(1)求生產(chǎn)一輛型車和生產(chǎn)一輛型單車的成本各為多少元?
(2)由于共享單車公司需求量加大,生產(chǎn)廠家需要再生產(chǎn)兩種型號的單車共10000輛,恰逢原料商對基本原料的價格進行調(diào)整,調(diào)整后,型單車每輛成本價比原來降低10%,型單車每輛的成本價不變,如果廠家準(zhǔn)備投入的總成本不超過216萬元,那么至少要生產(chǎn)多少輛型單車?
(3)在(2)的條件下,該生產(chǎn)廠家發(fā)現(xiàn),銷售過程中每輛型單車可獲利100元,每輛型單車可獲利120元,求全部銷售完這批單車獲得的利潤與型單車輛數(shù)之間的函數(shù)關(guān)系式,并求獲利最大的方案及最大利潤。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com