【題目】已知:關(guān)于x的方程2x2+kx﹣1=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是﹣1,求另一個(gè)根及k值.
【答案】
(1)證明:∵a=2,b=k,c=﹣1
∴△=k2﹣4×2×(﹣1)=k2+8,
∵無論k取何值,k2≥0,
∴k2+8>0,即△>0,
∴方程2x2+kx﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(2)解:把x=﹣1代入原方程得,2﹣k﹣1=0
∴k=1
∴原方程化為2x2+x﹣1=0,
解得:x1=﹣1,x2= ,即另一個(gè)根為 .
【解析】(1)方程有兩個(gè)不相等的實(shí)數(shù)根,則應(yīng)有△=b2-4ac>0,由此計(jì)算方程根的判別式即可證明方程根的情況;(2)把x=﹣1代入原方程,求得k的值,再解方程求得另一個(gè)根.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用根與系數(shù)的關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相較于點(diǎn)O,OE⊥AB與點(diǎn)O,OB平分∠DOF,∠DOE=62°.
求∠AOC、∠EOF、∠COF的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的圖象交x軸于A(﹣2,0)和點(diǎn)B,交y軸負(fù)半軸于點(diǎn)C,且OB=OC,下列結(jié)論:
①2b﹣c=2;②a= ;③ac=b﹣1;④ >0
其中正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請按要求完成下列問題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請運(yùn)用所學(xué)的計(jì)算方法,寫出兩個(gè)不同的運(yùn)算式,使四個(gè)數(shù)字的計(jì)算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市電力部門對一般照明用電實(shí)行“階梯電價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
第一檔:月用電量不超過200度的部分的電價(jià)為每度元.
第二檔:月用電量超過200度但不超過400度部分的電價(jià)為每度元.
第三檔:月用電量超過400度的部分的電價(jià)為每度元.
已知小明家去年5月份的用電量為215度,則小明家5月份應(yīng)交電費(fèi)______元
若去年6月份小明家用電的平均電價(jià)為元,求小明家去年6月份的用電量.
已知小明家去年7、8月份的用電量共700度月份的用電量少于8月份的用電量,兩個(gè)月的總電價(jià)是384元,求小明家7、8月的用電量分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BF是⊙O的直徑,A為⊙O上(異于B、F)一點(diǎn),⊙O的切線MA與FB的延長線交于點(diǎn)M;P為AM上一點(diǎn),PB的延長線交⊙O于點(diǎn)C,D為BC上一點(diǎn)且PA=PD,AD的延長線交⊙O于點(diǎn)E.
(1)求證: = ;
(2)若ED、EA的長是一元二次方程x2﹣5x+5=0的兩根,求BE的長;
(3)若MA=6 ,sin∠AMF= ,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說法正確的是( )
A. 若AD⊥BC,則四邊形AEDF是矩形 B. 若BD=CD,則四邊形AEDF是菱形
C. 若AD垂直平分BC,則四邊形AEDF是矩形 D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們規(guī)定:橫、縱坐標(biāo)相等的點(diǎn)叫做“完美點(diǎn)”.
(1)若點(diǎn)A(x,y)是“完美點(diǎn)”,且滿足x+y=4,求點(diǎn)A的坐標(biāo);
(2)如圖1,在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A坐標(biāo)為(0,4),連接OB,E點(diǎn)從O向B運(yùn)動(dòng),速度為2個(gè)單位/秒,到B點(diǎn)時(shí)運(yùn)動(dòng)停止,設(shè)運(yùn)動(dòng)時(shí)間為t.
①不管t為何值,E點(diǎn)總是“完美點(diǎn)”;
②如圖2,連接AE,過E點(diǎn)作PQ⊥x軸分別交AB、OC于P、Q兩點(diǎn),過點(diǎn)E作EF⊥AE交x軸于點(diǎn)F,問:當(dāng)E點(diǎn)運(yùn)動(dòng)時(shí),四邊形AFQP的面積是否發(fā)生變化?若不改變,求出面積的值;若改變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com