【題目】如圖,已知,,點(diǎn)是線段上一點(diǎn)(不與端點(diǎn)重合),、分別平分和交于點(diǎn)、.
(1)請(qǐng)說(shuō)明:;
(2)當(dāng)點(diǎn)在上移動(dòng)時(shí),請(qǐng)寫(xiě)出和之間滿足的數(shù)量關(guān)系為______;
(3)若,則當(dāng)點(diǎn)移動(dòng)到使得時(shí),請(qǐng)直接寫(xiě)出______(用含的代數(shù)式表示).
【答案】(1)見(jiàn)解析;(2)∠BQE=2∠BNE,證明見(jiàn)解析;(3)∠BEQ=,證明見(jiàn)解析.
【解析】
(1)根據(jù),可證明,從而可證明∠1=∠DBC,根據(jù)可證明,從而證明BD//EF;
(2)通過(guò)角平分線和平行線的性質(zhì)可證明∠BNE=∠NEQ,通過(guò)三角形的外角定理可證明∠BQE=2∠BNE;
(3)通過(guò)和三角形內(nèi)角和定理可證明∠BEM=∠BNE,由(1)中∠BNE=∠NEQ可得∠BEM=∠NEQ,所以∠BEQ=∠MEN,通過(guò)角平分線的性質(zhì)可得∠MEN==,即∠BEQ=.
(1)證明:
,
,
,
又,
,
∴BD//EF.
(2)∠BQE=2∠BNE,證明如下:
∵BD//EF
∴∠FEN=∠BNE
又∵EN平分∠QEF,
∴∠FEN=∠NEQ,
∴∠BNE=∠NEQ,
∵∠BNE+∠NEQ=∠BQE,
∴∠BQE=2∠BNE.
(3)∠BEQ=,證明如下:
∵EN平分∠QEF,
∴∠NEQ=,
同理可得∠QEM=,
∴∠MEN=,
∵,
∴∠2=,
∴∠BEF=180°-,
∴∠MEN=,
在△BEM中,∠CBD+∠BME+∠BEM=180°,
在△BEN中,∠CBD+∠BNE+∠BEN=180°,
∵,
∴∠BEM=∠BNE,
∵由(1)得∠BNE=∠NEQ,
∴∠BEM=∠NEQ,
∴∠BEQ=∠BEM+∠MEQ=∠NEQ+∠MEQ=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】速度分別為100km/h和akm/h(0<a<100)的兩車(chē)分別從相距s千米的兩地同時(shí)出發(fā),沿同一方向勻速前行.行駛一段時(shí)間后,其中一車(chē)按原速度原路返回,直到與另一車(chē)相遇時(shí)兩車(chē)停止.在此過(guò)程中,兩車(chē)之間的距離y(km)與行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法:①a=60;②b=2;③c=b+;④若s=60,則b=.其中說(shuō)法正確的是( 。
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 方程5x2=x有兩個(gè)不相等的實(shí)數(shù)根
B. 方程x2﹣8=0有兩個(gè)相等的實(shí)數(shù)根
C. 方程2x2﹣3x+2=0有兩個(gè)整數(shù)根
D. 當(dāng)k>時(shí),方程(k﹣1)x2+2x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰直角和等腰直角如圖放置,,,,其中,、、在一條直線上,連接并延長(zhǎng)交于,
(1)求證:
(2)與有什么位置關(guān)系?請(qǐng)說(shuō)明理由.
(3)若,與有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,三角形的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,將三角形經(jīng)過(guò)平移后得到三角形,其中點(diǎn)是點(diǎn)的對(duì)應(yīng)點(diǎn).
(1)畫(huà)出平移后得到的三角形;
(2)連接、,則線段、的關(guān)系為______;
(3)四邊形的面積為______(平方單位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】松雷中學(xué)圖書(shū)館近日購(gòu)進(jìn)甲、乙兩種圖書(shū),每本甲圖書(shū)的進(jìn)價(jià)比每本乙圖書(shū)的進(jìn)價(jià)高20元,花780元購(gòu)進(jìn)甲圖書(shū)的數(shù)量與花540元購(gòu)進(jìn)乙圖書(shū)的數(shù)量相同.
(1)求甲、乙兩種圖書(shū)每本的進(jìn)價(jià)分別是多少元?
(2)松雷中學(xué)計(jì)劃購(gòu)進(jìn)甲、乙兩種圖書(shū)共70本,總購(gòu)書(shū)費(fèi)用不超過(guò)4000元,則最多購(gòu)進(jìn)甲種圖書(shū)多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)平面直角坐標(biāo)系中的點(diǎn)P(x,y),定義d=|x|+|y|,我們稱(chēng)d為P(x,y)的幸福指數(shù).對(duì)于函數(shù)圖象上任意一點(diǎn)P(x,y),若它的幸福指數(shù)d≥1恒成立,則稱(chēng)此函數(shù)為幸福函數(shù),如二次函數(shù)y=x2+1就是一個(gè)幸福函數(shù),理由如下:設(shè)P(x,y)為y=x2+1上任意一點(diǎn),d=|x|+|y|=|x|+|x2+1|,∵|x|≥0,|x2+1|=x2+1≥1,∴d≥1.∴y=x2+1是一個(gè)幸福函數(shù).
(1)若點(diǎn)P在反比例函數(shù)y=的圖象上,且它的幸福指數(shù)d=2,請(qǐng)直接寫(xiě)出所有滿足條件的P點(diǎn)坐標(biāo);
(2)一次函數(shù)y=﹣x+1是幸福函數(shù)嗎?請(qǐng)判斷并說(shuō)明理由;
(3)若二次函數(shù)y=x2﹣(2m+1)x+m2+m(m>0)是幸福函數(shù),試求出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,平分,點(diǎn)在射線上,、分別是射線、上的動(dòng)點(diǎn)(、不與點(diǎn)重合),連接交射線于點(diǎn).設(shè).
(1)如圖1,若,則:①______;②當(dāng)時(shí),______.
(2)如圖2,若,垂足為,則是否存在這樣的的值,使得中存在兩個(gè)相等的角?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:相等的實(shí)數(shù)看作同一個(gè)實(shí)數(shù).有下列六種說(shuō)法:
①數(shù)軸上有無(wú)數(shù)多個(gè)表示無(wú)理數(shù)的點(diǎn);
②帶根號(hào)的數(shù)不一定是無(wú)理數(shù);
③每個(gè)有理數(shù)都可以用數(shù)軸上唯一的點(diǎn)來(lái)表示;
④數(shù)軸上每一個(gè)點(diǎn)都表示唯一一個(gè)實(shí)數(shù);
⑤沒(méi)有最大的負(fù)實(shí)數(shù),但有最小的正實(shí)數(shù);
⑥沒(méi)有最大的正整數(shù),但有最小的正整數(shù).
其中說(shuō)法錯(cuò)誤的有_____(注:填寫(xiě)出所有錯(cuò)誤說(shuō)法的編號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com