【題目】如圖在中,的中線,上的動點,是邊上動點,則的最小值為______________

【答案】

【解析】

E關(guān)于AD的對稱點M,連接CMADF,連接EF,過CCNABN,根據(jù)等腰三角形三線合一得出BD的長和ADBC,再利用勾股定理求出AD,利用等面積法結(jié)合垂線段最短進一步求出最小值即可.

如圖,作E關(guān)于AD的對稱點M,連接CMADF,連接EF,過CCNABN,

AB=AC=13,BC=10,AD是△ABC的中線,

BD=DC=5,ADBCAD平分∠BAC,

MAB上,

RtABD中,由勾股定理可得:

AD=,

,

E關(guān)于AD的對稱點M,

EF=FM,

CF+EF=CF+FM=CM,

根據(jù)垂線段最短可得:CM≥CN

即:CF+EF≥

CF+EF的最小值為:,

故答案為:.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點的外角平分線上一點,且滿足,過點于點的延長線于點,則下列結(jié)論:①;②;③;④.其中正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某村的居民自來水管道需要改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成,若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍,如果由甲、乙兩隊先合做天,那么余下的工程由甲隊單獨完成還需5天.設這項工程的規(guī)定時間是x天,則根據(jù)題意,下面所列方程正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD 是平行四邊形,AB=c,AC=b,BC=a,拋物線 y=ax2+bx﹣c x 軸的一個交點為(m,0).

(1)若四邊形ABCD是正方形,求拋物線y=ax2+bx﹣c的對稱軸;

(2) m=c,ac﹣4b<0,且 a,b,c為整數(shù),求四邊形 ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=﹣x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

1)求A、B兩點的坐標;

2)求COM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)當t為何值時COM≌△AOB,請直接寫出此時t值和M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖(1),已知:在三角形中,,,直線經(jīng)過點,直線,直線,垂足分別為點,試寫出線段之間的數(shù)量關(guān)系為_________________

2)思考探究:如圖(2),將圖(1)中的條件改為:在, 三點都在直線上,并且,其中為任意銳角或鈍角.請問(1)中結(jié)論還是否成立?若成立,請給出證明;若不成立,請說明理由.

3)拓展應用:如圖(3),三點所在直線上的兩動點,(三點互不重合),點平分線上的一點,且均為等邊三角形,連接,若,試判斷的形狀并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系xOy,A(4,0)、B(0,3)、C(4,3),I是△ABC的內(nèi)心將△ABC繞原點逆時針旋轉(zhuǎn)90°,I的對應點I′的坐標為( )

A. (-2,3) B. (-3,2) C. (3,-2) D. (2,-3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學的思路寫出證明過程;

(3)用文字敘述所證命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.

(1)求證:四邊形ABEF是平行四邊形;

(2)∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.

查看答案和解析>>

同步練習冊答案