【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CDAB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長線交于點(diǎn)E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周長;

(2)求證:直線BE是⊙O的切線.

【答案】(1)8π;(2)證明見解析.

【解析】

1)連接OC設(shè)半徑為r,在RtOFC中利用勾股定理即可解決問題.
2)只要證明CDEB,即可得到∠AFD=∠ABE90°,由此可以得出結(jié)論.

解:(1)連接OC.設(shè)半徑為r,

OACD,

DF=FC=

RTOFC,∵∠OFC=90°,F(xiàn)C=,OF=r﹣3,OC=r,

r2=(r﹣3)2+(2 ,

r=4,

∴⊙O的周長為8π.

(2)證明:∵OACD,

DF=FC,AD=AC,AFD=90°

∴∠ADC=ACD,

∵∠E=ACD,

∴∠ADC=E,

CDEB,

∴∠AFD=ABE=90°,

BE是⊙O的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點(diǎn)P從點(diǎn)A開始沿邊AB向終點(diǎn)B以每秒2個(gè)單位長度的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC以每秒4個(gè)單位長度的速度向終點(diǎn)C移動,如果點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)出發(fā),那么△PBQ的面積S隨出發(fā)時(shí)間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為 B,且拋物線不過第三象限.

(1)過點(diǎn)B作直線l垂直于x軸于點(diǎn)C,若點(diǎn)C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說明理由;

(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且與拋物線交于另外一點(diǎn)D(,b+8),求當(dāng)≤x<5時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列兩則材料,回答問題,材料一:定義直線yax+b與直線ybx+a互為互助直線,例如,直線yx+4與直y4x+1互為互助直線;材料二:對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1x1,y1)、P2x2,y2),P1、P2兩點(diǎn)間的直角距離dP1P2)=|x1x2|+|y1y2|.如:Q1(﹣3,1)、Q224)兩點(diǎn)間的直角距離為dQ1,Q2)=|32|+|14|8;材料三:設(shè)P0x0y0)為一個(gè)定點(diǎn),Qx,y)是直線yax+b上的動點(diǎn),我們把dP0,Q)的最小值叫做P0到直線yax+b的直角距離.

1)計(jì)算S(﹣1,6),T(﹣2,3)兩點(diǎn)間的直角距離dST)=   ;

2)直線y=﹣2x+3上的一點(diǎn)Hab)又是它的互助直線上的點(diǎn),求點(diǎn)H的坐標(biāo).

3)對于直線yax+b上的任意一點(diǎn)Mm,n),都有點(diǎn)N3m,2m3n)在它的互助直線上,試求點(diǎn)L5,﹣1)到直線yax+b的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個(gè)半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點(diǎn)滾動到D點(diǎn)其圓心所經(jīng)過的路線長為___________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(1)班積極響應(yīng)校團(tuán)委的號召,每位同學(xué)都向“希望工程”捐獻(xiàn)圖書,全班40名同學(xué)共捐圖書400.特別值得一提的是李保、王剛兩位同學(xué)在父母的支持下各捐獻(xiàn)了90冊圖書.班長統(tǒng)計(jì)了全班捐書情況如下表(被粗心的馬小虎用墨水污染了一部分):

冊數(shù)

4

5

6

7

8

90

人數(shù)

6

8

15

2

1)分別求出該班級捐獻(xiàn)7冊圖書和8冊圖書的人數(shù);

2)請算出捐書冊數(shù)的平均數(shù)、中位數(shù)和眾數(shù),并判斷其中哪個(gè)統(tǒng)計(jì)量不能反映該班同學(xué)捐書冊數(shù)的一般狀況,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教科書中這樣寫道:“我們把多項(xiàng)式叫做完全平方式,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問題:

1)分解因式: _____

2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.

3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,點(diǎn)軸上,且

1)求點(diǎn)的坐標(biāo);

2)求的面積;

3)在軸上是否存在點(diǎn),使以、三點(diǎn)為頂點(diǎn)的三角形的面積為7?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),A,B分別在y軸、x軸正半軸上,Dx軸正半軸上一動點(diǎn),ADDE,∠ADEα,矩形AOBC的面積為32AC2BC

1)如圖1,當(dāng)α90°時(shí),直線CEx軸于點(diǎn)F,求證:FOB中點(diǎn);

2)如圖2,當(dāng)α60°時(shí),若DOB中點(diǎn),求E點(diǎn)坐標(biāo);

3)如圖3,當(dāng)α120°時(shí),QAE的中點(diǎn),求D點(diǎn)運(yùn)動過程中BQ的最小值.

查看答案和解析>>

同步練習(xí)冊答案