【題目】如圖1,在平面直角坐標系中,拋物線y=x2-4x-5與x軸分別交于A、B(A在B的左邊),與y軸交于點C,直線AP與y軸正半軸交于點M,交拋物線于點P,直線AQ與y軸負半軸交于點N,交拋物線于點Q,且OM=ON,過P、Q作直線l
(1) 探究與猜想:
① 取點M(0,1),直接寫出直線l的解析式
取點M(0,2),直接寫出直線l的解析式
② 猜想:
我們猜想直線l的解析式y(tǒng)=kx+b中,k總為定值,定值k為__________,請取M的縱坐標為n,驗證你的猜想
(2) 如圖2,連接BP、BQ.若△ABP的面積等于△ABQ的面積的3倍,試求出直線l的解析式
【答案】(1)①PQ:y=6x-29,PQ:y=6x-26;
(2)k=6;
(3)直線PQ的解析式為y=6x-21
【解析】試題分析:(1)、①、首先根據二次函數解析式得出點A的坐標,然后根據待定系數法求出直線l的解析式;②、設設M(0,n),然后分別求出直線AP和AQ的解析式,然后根據直線與拋物線的交點求出點P和點Q的坐標,從而得出直線PQ的解析式,得出k的值;(2)、根據三角形的面積關系得出點P的坐標,從而得出直線PQ的函數解析式.
試題解析:(1) ① P(6,7)、Q(4,-5),PQ:y=6x-29
② 設M(0,n) AP的解析式為y=nx+n AQ的解析式為y=-nx-n
聯(lián)立,整理得x2-(4+n)x-(5+n)=0
∴xA+xP=-1+xP=4+n,xP=5+n 同理:xQ=5-n
設直線PQ的解析式為y=kx+b
聯(lián)立,整理得x2-(4+k)x-(5+b)=0 ∴xP+xQ=4+k
∴5+n+5-n=4+k,k=6
(3) ∵S△ABP=3S△ABQ ∴yP=-3yQ ∴kxP+b=-3(kxQ+b) ∵k=6 ∴6xP+18xQ=-b
∴6(5+n)+18(5-n)=4b,解得b=3n-30
∵xP·xQ=-(5+b)=-5-3n+30=(5+n)(5-n),解得n=3 ∴P(8,27)
∴直線PQ的解析式為y=6x-21
科目:初中數學 來源: 題型:
【題目】我區(qū)很多學校開展了大課間活動.某校初三(1)班抽查了10名同學每分鐘仰臥起坐的次數,數據如下(單位:次):51,69,64,52,64,72,48,52,76,52,那么這組數據的眾數與中位數分別為( ).
A.64和58
B.58和64
C.58和52
D.52和58
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC三個頂點的位置如圖(每個小正方形的邊長均為1).
(1)請畫出△ABC沿x軸向右平移3個單位長度,再沿y軸向上平移2個單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應點,不寫畫法).
(2)直接寫出A′、B′、C′三點的坐標:
A′( , ); B′( , );
C′( , ).
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形OABC的兩邊OA,OC分別在x軸,y軸的正半軸上,且點B(4,3),反比例函數y=圖象與BC交于點D,與AB交于點E,其中D(1,3).
(1)求反比例函數的解析式及E點的坐標;
(2)求直線DE的解析式;
(3)若矩形OABC對角線的交點為F (2,),作FG⊥x軸交直線DE于點G.
①請判斷點F是否在此反比例函數y=的圖象上,并說明理由;
②求FG的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明、小亮、小剛、小穎一起研究一道數學題,如圖,已知EF⊥AB,CD⊥AB, 小明說:“如果還知道∠CDG=∠BFE,則能得到∠AGD=∠ACB.”
小亮說:“把小明的已知和結論倒過來,即由∠AGD=∠ACB,
可得到∠CDG=∠BFE.”
小剛說:“∠AGD一定大于∠BFE.”
小穎說:“如果連接GF,則GF一定平行于AB.”
他們四人中,有個人的說法是正確的.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠OAB=45°,點A的坐標是(4,0),AB= ,連結OB.
(1)直接寫出點B的坐標.
(2)動點P從點O出發(fā),沿折線O﹣B﹣A方向向終點A勻速運動,另一動點Q從點O出發(fā),沿OA方向勻速運動,若點P的運動速度為 個單位/秒,點Q的運動速度是1個單位/秒,P、Q兩點同時出發(fā),設運動時間為t秒,請求出使△OPQ的面積等于1.5時t的值.
(3)動點P仍按(2)中的方向和速度運動,但Q點從A點向O點運動,速度為1個單位/秒,P、Q與△OAB中的任意一個頂點形成直角三角形時,求此時t(t≠0)的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正確的有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com