【題目】如圖,在矩形ABCD中,AB=9,AD=3,點P是邊BC上的動點(點P不與點B,點C重合),過點P作直線PQ∥BD,交CD邊于Q點,再把△PQC沿著動直線PQ對折,點C的對應(yīng)點是R點,設(shè)CP的長度為x,△PQR與矩形ABCD重疊部分的面積為y.
(1)求∠CQP的度數(shù);
(2)當x取何值時,點R落在矩形ABCD的AB邊上;
(3)①求y與x之間的函數(shù)關(guān)系式;
②當x取何值時,重疊部分的面積等于矩形面積的.
【答案】(1)∠CQP=30°;(2)x=2;(3)①,②
【解析】
(1)由于PQ與BD平行,∠CQP=∠CDB,因此只需求出∠CDB的度數(shù)即可.可在直角三角形ABD中,根據(jù)AB,AD的長求出∠ABD的度數(shù),由∠CQP=∠CDB=∠ABD即可得出∠CQP的度數(shù);
(2)當R在AB上時,三角形PBR為直角三角形,且∠BPR=60°(可由(1)的結(jié)論得出),根據(jù)折疊的性質(zhì)PR=CP=x,然后用x表示出BP的長,在直角三角形可根據(jù)∠RPB的余弦值得出關(guān)于x的方程即可求出x的值;
(3)①要分兩種情況進行討論:
一、當R在AB或矩形ABCD的內(nèi)部時,重合部分是三角形PQR,那么重合部分的面積可通過求三角形CQP的面積來得出,在直角三角形CQP中,已知了∠CQP的度數(shù),可用CP即x的值表示出CQ的長,然后根據(jù)三角形的面積計算公式可得出y,x的函數(shù)關(guān)系式;
二、當R在矩形ABCD的外部時,重合部分是個四邊形的面積,如果設(shè)RQ,RP與AB的交點分別為E、F,那么重合部分就是四邊形EFPQ,它的面積=△CQR的面積﹣△REF的面積.△CQR的面積在一已經(jīng)得出,關(guān)鍵是求△REF的面積,首先要求出的是兩條直角邊RE,RF的表達式,可在直角三角形PBF中用一的方法求PF的長,即可通過RP﹣PF得出RF的長;在直角三角形REF中,∠RFE=∠PFB=30°,可用其正切值表示出RE的長,然后可通過三角形的面積計算公式得出三角形REF的面積.進而得出S與x的函數(shù)關(guān)系式;
②可將矩形的面積代入①的函數(shù)式中,求出x的值,然后根據(jù)自變量的取值范圍來判定求出的x的值是否符合題意.
解:(1)如圖,∵四邊形ABCD是矩形,
∴AB=CD,AD=BC.
又AB=9,AD=3,∠C=90°,
∴CD=9,BC=3.
∴tan∠CDB=,
∴∠CDB=30°.
∵PQ∥BD,
∴∠CQP=∠CDB=30°;
(2)如圖1,由軸對稱的性質(zhì)可知,△RPQ≌△CPQ,
∴∠RPQ=∠CPQ,RP=CP.
由(1)知∠CQP=30°,
∴∠RPQ=∠CPQ=60°,
∴∠RPB=60°,
∴RP=2BP.
∵CP=x,
∴PR=x,PB=3﹣x.
在△RPB中,根據(jù)題意得:2(3﹣x)=x,
解這個方程得:x=2;
(3)①當點R在矩形ABCD的內(nèi)部或AB邊上時,
,,
∵△RPQ≌△CPQ,
∴當時,
當R在矩形ABCD的外部時(如圖2),,
在Rt△PFB中,
∵∠RPB=60°,
∴PF=2BP=2(﹣x),
又∵RP=CP=x,
∴RF=RP﹣PF=3x﹣6,
在Rt△ERF中,
∵∠EFR=∠PFB=30°,
∴ER=x﹣6.
∴S△ERF=ER×FR=x2﹣18x+18,
∵y=S△RPQ﹣S△ERF,
∴當時,y=-x2+18x﹣18.
綜上所述,y與x之間的函數(shù)解析式是:.
②矩形面積=,
當時,函數(shù)隨自變量的增大而增大,
所以y的最大值是6,而矩形面積的的值=,
而,所以,當時,y的值不可能是矩形面積的;
當時,根據(jù)題意,得:,
解這個方程,得,
因為,
所以不合題意,舍去.
所以.
綜上所述,當時,△PQR與矩形ABCD重疊部分的面積等于矩形面積的.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.
求證:四邊形是平行四邊形.
若,,則在點的運動過程中:
①當________時,四邊形是矩形,試說明理由;
②當________時,四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=a與拋物線交于A、B兩點(A在B的左側(cè)),交y軸于點C
(1)若AB=4,求a的值
(2)若拋物線上存在點D(不與A、B重合),使,求a的取值范圍
(3)如圖2,直線y=kx+2與拋物線交于點E、F,點P是拋物線上的動點,延長PE、PF分別交直線y=-2于M、N兩點,MN交y軸于Q點,求QM·QN的值。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】傳說古希臘畢達哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點或用小石子來表示數(shù),比如,他們研究過1,3,6,10,……,由于這些數(shù)可以用圖中所示的三角形點陣標表示,他們就將其稱為三角形數(shù),第n個三角形數(shù)可以用表示.
請根據(jù)以上材料,證明以下結(jié)論:
(1)任意一個三角形數(shù)乘8再加1是一個完全平方數(shù);
(2)連續(xù)兩個三角形數(shù)的和是一個完全平方數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新華商場銷售某種冰箱,每臺進價為2500元,銷售價為2900元,平均每天能售出8臺;調(diào)查發(fā)現(xiàn),當銷售價每降低50元,平均每天就能多售出4臺.商場要想使這種冰箱的銷售利潤平均每天達到5000元,每臺冰箱應(yīng)該降價多少元?若設(shè)每臺冰箱降價x元,根據(jù)題意可列方程( 。
A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000
C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勤儉節(jié)約一直是中華民族的傳統(tǒng)美德,某中學(xué)校團委準備以“勤儉節(jié)約”為主題開展一次演講比賽,為此先對同學(xué)們每月零花錢的數(shù)額進行一些了解,隨機調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表.
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | a |
C | 60≤x<90 | b |
D | 90≤x<120 | 8 |
E | 120≤x<150 | 2 |
根據(jù)以上圖表,解答下列問題:
(1)填空:這次調(diào)查的同學(xué)共有 人,a+b= ,m= ;
(2)求扇形統(tǒng)計圖中扇形B的圓心角的度數(shù);
(3)該校共有1200名學(xué)生,請估計每月零花錢的數(shù)額在60≤x<90范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風(fēng)景.大橋主體工程隧道的東、西兩端各設(shè)置了一個海中人工島,來銜接橋梁和海底隧道,西人工島上的A點和東人工島上的B點間的距離約為5.6千米,點C是與西人工島相連的大橋上的一點,A,B,C在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達P點時觀測兩個人工島,分別測得與觀光船航向的夾角∠DPA=18°,∠DPB=53°,求此時觀光船到大橋AC段的距離的長.
參考數(shù)據(jù):°,°,°,°,°,°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com