【題目】新華商場(chǎng)銷(xiāo)售某種冰箱,每臺(tái)進(jìn)價(jià)為2500元,銷(xiāo)售價(jià)為2900元,平均每天能售出8臺(tái);調(diào)查發(fā)現(xiàn),當(dāng)銷(xiāo)售價(jià)每降低50元,平均每天就能多售出4臺(tái).商場(chǎng)要想使這種冰箱的銷(xiāo)售利潤(rùn)平均每天達(dá)到5000元,每臺(tái)冰箱應(yīng)該降價(jià)多少元?若設(shè)每臺(tái)冰箱降價(jià)x元,根據(jù)題意可列方程( 。

A. (2900-x)(8+4×)=5000 B. (400-x)(8+4×)=5000

C. 4(2900-x)(8+)=5000 D. 4(400-x)(8+)=5000

【答案】B

【解析】

銷(xiāo)售利潤(rùn)=一臺(tái)冰箱的利潤(rùn)×銷(xiāo)售冰箱數(shù)量,一臺(tái)冰箱的利潤(rùn)=售價(jià)進(jìn)價(jià),降低售價(jià)的同時(shí),銷(xiāo)售量就會(huì)提高,“一減一加”,根據(jù)每臺(tái)的盈利×銷(xiāo)售的件數(shù)=5000,即可列方程.

設(shè)每臺(tái)冰箱的降價(jià)應(yīng)為元,依題意得:.

故選.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車(chē)專(zhuān)賣(mài)店經(jīng)銷(xiāo)某種型號(hào)的汽車(chē).已知該型號(hào)汽車(chē)的進(jìn)價(jià)為15萬(wàn)元/輛,經(jīng)銷(xiāo)一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車(chē)售價(jià)定為25萬(wàn)元/輛時(shí),平均每周售出8輛;售價(jià)每降低0.5萬(wàn)元,平均每周多售出1輛.

1)當(dāng)售價(jià)為22萬(wàn)元/輛時(shí),求平均每周的銷(xiāo)售利潤(rùn).

2)若該店計(jì)劃平均每周的銷(xiāo)售利潤(rùn)是90萬(wàn)元,為了盡快減少庫(kù)存,求每輛汽車(chē)的售價(jià).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時(shí)間相同,已知乙種污水處理器每小時(shí)比甲種污水處理器多處理20噸的污水.

1)分別求甲、乙兩種污水處理器的污水處理效率;

2)若某廠每天同時(shí)開(kāi)甲、乙兩種污水處理器處理污水共4小時(shí),且甲、乙兩種污水處理器處理污水每噸需要的費(fèi)用分別30元和50元,問(wèn)該廠每個(gè)月(以30天計(jì))需要污水處理費(fèi)多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的對(duì)稱(chēng)軸是x=-4,拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),O是坐標(biāo)原點(diǎn),且A,C的坐標(biāo)分別是(-2,0),(0,3).

(1)求拋物線的解析式;

(2)拋物線上有一點(diǎn)是P,滿(mǎn)足∠PBC=90,求P點(diǎn)的坐標(biāo);

(3)y軸上是否存在點(diǎn)E使得△AOE與△PBC相似?若存在求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BC,AC上,DEAB,過(guò)點(diǎn)EEFDE,交BC的延長(zhǎng)線于點(diǎn)F

1)求∠F的度數(shù);

2)若CD4,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是三邊都不相等的三角形,點(diǎn)O和點(diǎn)P是這個(gè)三角形內(nèi)部?jī)牲c(diǎn).
1)如圖①,如果點(diǎn)P是這個(gè)三角形三個(gè)內(nèi)角平分線的交點(diǎn),那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
2)如圖②,如果點(diǎn)O是這個(gè)三角形三邊垂直平分線的交點(diǎn),那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
3)如圖③,如果點(diǎn)P(三角形三個(gè)內(nèi)角平分線的交點(diǎn)),點(diǎn)O(三角形三邊垂直平分線的交點(diǎn))同時(shí)在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請(qǐng)直接回答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,且.

1)在圖1中,當(dāng)時(shí),求證:;

2)在圖2中,當(dāng)時(shí),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)(x-5)2=16 (直接開(kāi)平方法) (2)x2+5x=0 (因式分解法)

(3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)

查看答案和解析>>

同步練習(xí)冊(cè)答案