【題目】如圖所示,,點軸上,將三角形沿軸負方向平移,平移后的圖形為三角形,且點的坐標為.

1)直接寫出點的坐標為 ;

2)在四邊形中,點從點出發(fā),沿“”移動,若點的速度為每秒1個單位長度,運動時間為秒,回答下問題:

①求點在運動過程中的坐標(用含的式子表示,寫出過程);

②當 秒時,點的橫坐標與縱坐標互為相反數(shù);

③當秒時,設,,,試問之間的數(shù)量關系能否確定?若能,請用含的式子表式,寫出過程;若不能,說明理由.

【答案】1;(2,;2能,,見解析

【解析】

1)根據(jù)平移的性質即可得到結論;

2)①當點P在線段BC上時,點P的坐標(-t,2),當點P在線段CD上時,點P的坐標(-3,5-t);

②由點C的坐標為(-3,2).得到BC=3,CD=2,由于點P的橫坐標與縱坐標互為相反數(shù);于是確定點P在線段BC上,有PB=CD,即可得到結果;

③如圖,過PPFBCABF,則PFAD,根據(jù)平行線的性質即可得到結論.

1)根據(jù)題意,可得

三角形OAB沿x軸負方向平移3個單位得到三角形DEC,

∵點A的坐標是(1,0),

∴點E的坐標是(-2,0);

故答案為:(-2,0);

2)①當點P在線段BC上時,點P的坐標(-t,2),

當點P在線段CD上時,點P的坐標(-3,5-t);

②∵點C的坐標為(-32),

BC=3,CD=2,

∵點P的橫坐標與縱坐標互為相反數(shù);

∴點P在線段BC上,

PB=CD,

t=2

∴當t=2秒時,點P的橫坐標與縱坐標互為相反數(shù);

故答案為:2;

③能確定,

如圖,過PPFBCABF

PFAD,

∴∠1=CBP=x°,∠2=DAP=y°,

∴∠BPA=1+2=x°+y°=z°

z=x+y

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件

B. 甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

C. 明天降雨的概率為,表示明天有半天都在降雨

D. 了解一批電視機的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個等腰RtABC,RtCEF有公共頂點C,ABC﹣CEF=90°,連接AF,MAF的中點

(1)如圖1,當CBCE在同一直線上時,連接CM,若CB=1,CE=2,求CM的長.

(2)如圖2,連接MB,ME,當∠BCE=45°時,求證:BM=ME.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,作AB邊的垂直平分線交直線BCM,交AB于點N

1)如圖,若,則=_________度;

2)如圖,若,則=_________度;

3)如圖,若,則=________度;

4)由問,你能發(fā)現(xiàn)∠A有什么關系?寫出猜想,并證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ABDC重合,得到折痕MN,將紙片展平;再一次折疊,使點D落到MN上的點F處,折痕APMNE;延長PFABG.求證:

(1)AFG≌△AFP;

(2)APG為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ABAC,P為斜邊BC上一點(PBCP),分別過點B,CBEAP于點E,CDAP于點D

1)求證:ADBE

2)若AE2DE2,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三角形ABC的三邊長分別為6 cm7.5 cm、9 cm,三角形DEF的一邊長為4 cm.當三角形DEF的另兩邊長是下列哪一組時,這兩個三角形相似( )

A. 2 cm、3 cm B. 4 cm、5 cm C. 5 cm、6 cm D. 6 cm7 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,馬戲團讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為12米.

1)若吊環(huán)高度為2米,支點 A為蹺蹺板 PQ的中點,獅子能否將公雞送到吊環(huán)上?為什么?

2)若吊環(huán)高度為36米,在不改變其他條件的前提下移動支柱,當支點 A移到蹺蹺板 PQ的什么位置時,獅子剛好能將公雞送到吊環(huán)上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,以AB為直徑作⊙O,點D為⊙O上一點,且CD=CB、連接DO并延長交CB的延長線于點E.

(1)判斷直線CD與⊙O的位置關系,并說明理由;

(2)若BE=4,DE=8,求AC的長.

查看答案和解析>>

同步練習冊答案