【題目】如圖,∠A=∠B=90°,E是AB上的一點(diǎn),且AE=BC,∠1=∠2.
(1)求證:Rt△ADE與Rt△BEC全等;
(2)求證:△CDE是直角三角形.
【答案】(1)證明見(jiàn)解析; (2)證明見(jiàn)解析.
【解析】試題分析:(1)本題根據(jù)已知得出DE=CE,利用HL定理得出兩個(gè)三角形全等; (2)利用全等三角形的性質(zhì)得出對(duì)應(yīng)角相等,利用等角的余角相等得出∠DEC=90°即可.
試題解析:
(1)全等.理由是:
∵∠1=∠2,
∴DE=CE
.∵∠A=∠B=90°,AE=BC,
∴Rt△ADE≌Rt△BEC(HL).
(2)是直角三角形.理由是:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE.
∵∠ECB+∠BEC=90°,
∴∠AED+∠BEC=90°.
∴∠DEC=90°,
∴△CDE是直角三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中,是中心對(duì)稱但不一定是軸對(duì)稱圖形的是( 。
A.等邊三角形
B.矩形
C.菱形
D.平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:在一個(gè)圖形上畫(huà)一條直線,若這條直線既平分該圖形的面積,又平分該圖形的周長(zhǎng),我們稱這條直線為這個(gè)圖形的“等分積周線”.
(1)如圖1,在△ABC中,AB=BC,且BC≠AC,請(qǐng)你在圖1中用尺規(guī)作圖作出△ABC的一條“等分積周線”;
(2)在圖1中,過(guò)點(diǎn)C能否畫(huà)出一條“等分積周線”?若能,說(shuō)出確定的方法;若不能,請(qǐng)說(shuō)明理由.
(3)如圖3,在△ABC中,AB=BC=6cm,AC=8cm,請(qǐng)你不過(guò)△ABC的頂點(diǎn),畫(huà)出△ABC的一條“等分積周線”,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形三條邊大小之間存在一定的關(guān)系,以下列各組線段為邊,能組成三角形的是( )
A.2cm、3cm、5cm
B.5cm、6cm、10cm
C.1cm、1cm、3cm
D.3cm、4cm、9cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年有700多位來(lái)自全國(guó)各地的知名企業(yè)家聚首湖北共簽約項(xiàng)目投資總額為909260000元,將909260000用科學(xué)計(jì)數(shù)法表示__________.(精確到千萬(wàn)位)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com