【題目】如圖,在中,,過點(diǎn)、,且交邊、于點(diǎn)、,已知,連接、

求證:四邊形為菱形;

平分,求證:

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)連接AO并延長AOBCMOOQ⊥ABQ,連接OC,根據(jù)等腰三角形的性質(zhì)證出∠BAC=∠ABO=∠ACO,推出∠BAC=∠OEB=∠OFC,得出AE∥OF,AF∥OE,再OE=OF,即可推出答案;(2)根據(jù)角平分線定理求出OQ=OM,根據(jù)勾股定理求出BQ=BM,根據(jù)垂徑定理即可推出結(jié)論.

證明:連接并延長,,連接,

,

,

,

,,

,

,

,,

四邊形是平行四邊形,

,

平行四邊形為菱形.

,

的垂直平分線上,

,

平分

,

由勾股定理得:

由垂徑定理得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC在正方形網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(0,3),按要求回答下列問題:

1)在圖中建立正確的平面直角坐標(biāo)系;

2)直接寫出ABC的面積;

3)畫出一個(gè)ACD,使得ADCD,并寫出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+與拋物線y= 交于點(diǎn)A(﹣2,0)與點(diǎn)D,直線y=kx+y軸交于點(diǎn)C.

(1)求kb的值及點(diǎn)D的坐標(biāo);

(2)過D點(diǎn)作DEy軸于點(diǎn)E,點(diǎn)P是拋物線上AD間的一個(gè)動點(diǎn),過P點(diǎn)作PMCE交線段ADM點(diǎn),問是否存在P點(diǎn)使得四邊形PMEC為平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為1的小正方形網(wǎng)格中,點(diǎn)A,B,C均落在格點(diǎn)上.

(1)猜想△ABC的形狀   ,并證明;

(2)直接寫出△ABC的面積=   ;

(3)畫出△ABC關(guān)于直線l的軸對稱圖形△A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“三等分角”是數(shù)學(xué)史上一個(gè)著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OBx軸上、邊OA與函數(shù)的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)PRx軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請研究以下問題:

(1)設(shè)P(,)、R(,),求直線OM對應(yīng)的函數(shù)表達(dá)式(用含,的代數(shù)式表示);

(2)分別過點(diǎn)PRy軸和x軸的平行線,兩直線相交于點(diǎn)Q.請說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;

(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡要說明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2 m,圖中折線OABD、線段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象。

1)求s2t之間的函數(shù)關(guān)系式;

2)小明從家出發(fā),經(jīng)過多長時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A,0),B0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,A=36°,DE是AB的垂直平分線,DE交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE.下列結(jié)論①BE平分ABC;②AE=BE=BC;③BEC周長等于AC+BC;④E點(diǎn)是AC的中點(diǎn).其中正確的結(jié)論有 (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市老板大寶第一次用1000元購進(jìn)某種商品,由于暢銷,這批商品很快售完,第二次去進(jìn)貨時(shí)發(fā)現(xiàn)批發(fā)價(jià)上漲了5元,購買與第一次相同數(shù)量的這種商品需要1250元.

1)求第一次購買這種商品的進(jìn)貨價(jià)是多少元?

2)若這兩批商品的售價(jià)均為32元,問這兩次購進(jìn)的商品全部售完(不考慮其它因素)能賺多少元錢?

查看答案和解析>>

同步練習(xí)冊答案