【題目】定義:對(duì)于給定的二次函數(shù)y=a(x﹣h)2+k(a≠0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.
(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____;
(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;
(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m≠0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)B、A,且兩函數(shù)圖象的交點(diǎn)的橫坐標(biāo)分別為1和2,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動(dòng)點(diǎn)P,過點(diǎn)P作x軸的平行線與其伴生一次函數(shù)的圖象交于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為n,直接寫出線段PQ的長(zhǎng)為時(shí)n的值.
【答案】y=x﹣5
【解析】分析:(1)根據(jù)定義,直接變形得到伴生一次函數(shù)的解析式;
(2)求出頂點(diǎn),代入伴生函數(shù)解析式即可求解;
(3)根據(jù)題意得到伴生函數(shù)解析式,根據(jù)P點(diǎn)的坐標(biāo),坐標(biāo)表示出縱坐標(biāo),然后通過PQ與x軸的平行關(guān)系,求得Q點(diǎn)的坐標(biāo),由PQ的長(zhǎng)列方程求解即可.
詳解:(1)∵二次函數(shù)y=(x﹣1)2﹣4,
∴其伴生一次函數(shù)的表達(dá)式為y=(x﹣1)﹣4=x﹣5,
故答案為y=x﹣5;
(2)∵二次函數(shù)y=(x﹣1)2﹣4,
∴頂點(diǎn)坐標(biāo)為(1,﹣4),
∵二次函數(shù)y=(x﹣1)2﹣4,
∴其伴生一次函數(shù)的表達(dá)式為y=x﹣5,
∴當(dāng)x=1時(shí),y=1﹣5=﹣4,
∴(1,﹣4)在直線y=x﹣5上,
即:二次函數(shù)y=(x﹣1)2﹣4的頂點(diǎn)在其伴生一次函數(shù)的圖象上;
(3)∵二次函數(shù)y=m(x﹣1)2﹣4m,
∴其伴生一次函數(shù)為y=m(x﹣1)﹣4m=mx﹣5m,
∵P點(diǎn)的橫坐標(biāo)為n,(n>2),
∴P的縱坐標(biāo)為m(n﹣1)2﹣4m,
即:P(n,m(n﹣1)2﹣4m),
∵PQ∥x軸,
∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
∴PQ=(n﹣1)2+1﹣n,
∵線段PQ的長(zhǎng)為,
∴(n﹣1)2+1﹣n=,
∴n=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶某中學(xué)組織七、八、九年級(jí)學(xué)生參加“直轄20年,點(diǎn)贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級(jí)統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計(jì)圖中九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)經(jīng)過評(píng)審,全校有4篇作文榮獲特等獎(jiǎng),其中有一篇來自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)作文中任選兩篇刊登在?希(qǐng)利用畫樹狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)作文被選登在?系母怕剩
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,且AB=2CD,E. F分別是AB、BC的中點(diǎn),EF與BD相交于點(diǎn)M.
(1)求證:四邊形CBED是平行四邊形.
(2)若DB=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.
(1)求拋物線的解析式;
(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);
(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出P,Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D為圓O的四等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OC→→DO的路線做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到圓心O時(shí)立即停止.設(shè)運(yùn)動(dòng)時(shí)間為(s),∠APB的度數(shù)為y度,則下列圖象中表示y(度)與 t(s)之間的函數(shù)關(guān)系最恰當(dāng)?shù)氖?/span> ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a,b滿足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.
(3) 點(diǎn)A,B,C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)
(4) 請(qǐng)問:3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
車型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車 | ||
800 | 900 | |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)為邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,設(shè)交的外角平分線于點(diǎn),交的角平分線于.
(1)求證:;
(2)當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并證明你的結(jié)論;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com