【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°③(∠α+∠β);④(∠α﹣∠β).正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得C的仰角為45°,已知OA=200米,山坡坡度為 (即tan∠PAB= ),且O,A,B在同一條直線上,求電視塔OC的高度以及此人所在的位置點P的垂直高度.(側(cè)傾器的高度忽略不計,結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠BDC+∠EFC=180°,∠DEF=∠B.
(1)DE與BC是否平行,請說明理由;
(2)D、E、F分別為AB、AC、DC中點,連接BF,若四邊形 ADEF=求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題發(fā)現(xiàn):數(shù)學興趣小組在活動時,老師提出了這樣一個問題:如圖①,在Rt△ABC中,∠BAC=90°,BC=10,AD是BC邊上的中線,求AD的長度.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,則AD=AE
在△ADC和△EDB中
∴△ADC≌△EDB
∴∠DBE=∠DCA,BE=AC
∴BE∥AC
∴∠EBA+∠BAC=180°
∵∠BAC=90°
∴∠EBA=90°
在△EBA和△CAB中
∴△EBA≌△CAB
∴AE=BC
∵BC=10
∴AD=AE=BC=5
(1)若將上述問題中條件“BC=10”換成“BC=a”,其他條件不變,則可得AD= .
從上得到結(jié)論:直角三角形斜邊上的中線,等于斜邊的一半.
(感悟)解題時,條件中若出現(xiàn)“中點”“中線”等字樣,可以考慮延長中線構(gòu)造全等三角形進而求解.
問題解決:(2)如圖②,在四邊形ABCD中,AD∥BC,∠D=90°,M是AB的中點.若CM=6.5,BC+CD+DA=17,求四邊形ABCD的面積.
問題拓展:(3)如圖③,在平行四邊形ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,∠DFE與∠AEF的度數(shù)滿足數(shù)量關(guān)系:∠DFE=k∠AEF,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片的兩只直角分別沿EF、DF翻折,點B恰好落在AD邊上的點B′處,點C恰好落在邊B′F上.若AE=3,BE=5,則FC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家住房戶型呈長方形,平面圖如下(單位:米).現(xiàn)準備鋪設整個長方形地面,其中三間臥室鋪設木地板,其它區(qū)域鋪設地磚.(房間內(nèi)隔墻寬度忽略不計)
(1)求a的值;
(2)請用含x的代數(shù)式分別表示鋪設地面需要木地板和地磚各多少平方米;
(3)按市場價格,木地板單價為300元/平方米,地磚單價為100元/平方米.裝修公司有A,B兩種活動方案,如表:
已知臥室2的面積為21平方米,則小方家應選擇哪種活動,使鋪設地面總費用(含材料費及安裝費)更低?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=84°,點O是∠ABC,∠ACB角平分線的交點,點P是∠BOC,∠OCB角平分線的交點,若∠P=100°,則∠ACB的大小為__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com