【題目】如圖,某科技物展覽大廳有A、B兩個入口,C、D、E三個出口.小昀任選一個入口進(jìn)入展覽大廳, 參觀結(jié)束后任選一個出口離開.
(1)若小昀已進(jìn)入展覽大廳,求他選擇從出口C離開的概率.
(2)求小昀選擇從入口A進(jìn)入,從出口E離開的概率.(請用列表或畫樹狀圖求解)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0 的兩根 x1,x2均為正數(shù),其中x1>x2,且滿足1<x1﹣x2<2,那么稱這個方程有“友好根”.
(1)方程(x﹣)(x﹣)=0_____“友好根”(填:“有”或“沒有”);
(2)已知關(guān)于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使≌,若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q.試探究:當(dāng)m為何值時,是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E,B.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)過點(diǎn)A作AC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一點(diǎn)(點(diǎn)P在AC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時,線段PD最長?并求出最大值;
(3)若點(diǎn)M在拋物線上,點(diǎn)N在其對稱軸上,使得以A,E,N,M為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo).(請直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C,D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:①a﹣b+c<0;②2a+b+c>0;③x(αx+b)≤a+b;④a>﹣1.其中正確的有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市有,兩種型號的瓶子,其容量和價格如表,小張買瓶子用來分裝15升油(瓶子都裝滿,且無剩油);當(dāng)日促銷活動:購買型瓶3個或以上,一次性返還現(xiàn)金5元,設(shè)購買型瓶(個),所需總費(fèi)用為(元),則下列說法不一定成立的是( )
型號 | A | B |
單個盒子容量(升) | 2 | 3 |
單價(元) | 5 | 6 |
A.購買型瓶的個數(shù)是為正整數(shù)時的值B.購買型瓶最多為6個
C.與之間的函數(shù)關(guān)系式為D.小張買瓶子的最少費(fèi)用是28元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com