【題目】在函數(shù)y=kx(k>0)的圖象上有三點(diǎn)A1(x1,y1),A2(x2,y2),A3(x3,y3),已知x1<x2<0<x3,則下列各式中正確的是( )
A. y1<y2<0<y3 B. y3<0<y1<y2
C. y2<y1<y3<0 D. y3<y1<0<y2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DE⊥BC,DE與AC的延長線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與⊙O交于點(diǎn)G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)點(diǎn)點(diǎn)同學(xué)通過畫圖和測量得到以下近似數(shù)據(jù):
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是( )
A. 所有的矩形都相似;
B. 所有的直角三角形都相似
C. 有一個(gè)角是100°的所有等腰三角形都相似;
D. 有一個(gè)角是50°的所有等腰三角形都相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)E在邊AD上,且AE:ED=1:3.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AB 運(yùn)動(dòng)到點(diǎn)B停止.過點(diǎn)E作EF⊥PE交射線BC于點(diǎn)F,設(shè)M是線段EF的中點(diǎn),則在點(diǎn)P運(yùn)動(dòng)的整個(gè)過程中,點(diǎn)M運(yùn)動(dòng)路線的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級一班開展了“讀一本好書”的活動(dòng),班委會(huì)對學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)八年級一班有多少名學(xué)生?
(2)請補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游區(qū)有一個(gè)景觀奇異的望天洞,D點(diǎn)是洞的入口,游人從入口進(jìn)洞游覽后,可經(jīng)山洞到達(dá)山頂?shù)某隹跊鐾處觀看旅游區(qū)風(fēng)景,最后坐纜車沿索道AB返回山腳下的B處.在同一平面內(nèi),若測得斜坡BD的長為100米,坡角∠DBC=10°,在B處測得A的仰角∠ABC=40°,在D處測得A的仰角∠ADF=85°,過D點(diǎn)作地面BE的垂線,垂足為C.
(1)求∠ADB的度數(shù);(2)求索道AB的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com