【題目】“校園音樂之聲“結(jié)束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計(jì)圖:

1)求本次比賽參賽選手總?cè)藬?shù),并補(bǔ)全頻數(shù)直方圖;

2)求扇形統(tǒng)計(jì)圖中扇形E的圓心角度數(shù);

3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機(jī)選取兩人,求恰好選中兩名女生的概率.

【答案】136人,見解析;(250°;(3)樹狀圖見解析,

【解析】

1)由D組人數(shù)及其所占百分比可得總?cè)藬?shù),總?cè)藬?shù)減去A、BC、D組人數(shù)求出E的人數(shù)即可補(bǔ)全圖形;

2)用360°乘以E組人數(shù)所占比例即可得;

3)畫樹狀圖得出所有等可能結(jié)果數(shù),再根據(jù)概率公式求解可得.

解:(1)本次比賽參賽選手總?cè)藬?shù)為9÷25%36(人),

E組人數(shù)為36﹣(4+7+11+9)=5(人),

補(bǔ)全直方圖如下:

2)扇形統(tǒng)計(jì)圖中扇形E的圓心角度數(shù)為360°×50°.

3)由題意知E組中男生有3人,女生有2人,

畫圖如下:

共有20種等可能結(jié)果,其中恰好選中兩名女生的有2種,

所以恰好選中兩名女生的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C

處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,

1)請用尺規(guī)作圖法,作∠B的平分線,交AD于點(diǎn)E;(不要求寫作法,保留作圖痕跡)

2 若平行四邊形ABCD的周長為10,CD2,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對九年一班50名學(xué)生進(jìn)行長跑項(xiàng)目的測試,根據(jù)測試成績制作了兩個(gè)統(tǒng)計(jì)圖.

請根據(jù)相關(guān)信息,解答下列問題:

1)本次測試的學(xué)生中,得3分的學(xué)生有________人,得4分的學(xué)生有________人;

2)求這50個(gè)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,的三邊分別相切于點(diǎn)叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點(diǎn)則四邊形叫做的外切四邊形.

1)如圖2,試探究圓外切四邊形的兩組對邊之間的數(shù)量關(guān)系,猜想: (橫線上填“>”,“<”“=”);

2)利用圖2證明你的猜想(寫出已知,求證,證明過程);

3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:

4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連接DP

1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對角線上點(diǎn)A處,試求AP的長;

2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)P作直線PEBC于點(diǎn)E,將△DAP△PBE分別沿DPPE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A,B處,若P,A,B三點(diǎn)恰好在同一直線上,且AB=2,試求此時(shí)AP的長.

3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過點(diǎn)P作直線PGBC于點(diǎn)G,將△DAP△PBG分別沿DPPG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,請直接寫出FBC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的四個(gè)命題:

①當(dāng)x=0時(shí),y有最小值12;

n為任意實(shí)數(shù),x=3+n時(shí)的函數(shù)值大于x=3-n時(shí)的函數(shù)值;

③若n3,且n是整數(shù),當(dāng)時(shí),y的整數(shù)值有個(gè);

④若函數(shù)圖象過點(diǎn),其中a0,b0,則ab

其中真命題的序號(hào)是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

第一個(gè)等式:

第二個(gè)等式:;

第三個(gè)等式:

第四個(gè)等式:;

按上述規(guī)律,回答下列問題:

(1)請寫出第六個(gè)等式:a6= = ;

(2)用含n的代數(shù)式表示第n個(gè)等式:an= = ;

(3)a1+a2+a3+a4+a5+a6= (得出最簡結(jié)果);

(4)計(jì)算:a1+a2++an

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)問題解決往往經(jīng)歷發(fā)現(xiàn)猜想——探索歸納——問題解決的過程,下面結(jié)合一道幾何題來體驗(yàn)一下.

(發(fā)現(xiàn)猜想)(1)如圖①,已知∠AOB70°,∠AOD100°OC為∠BOD的角平分線,則∠AOC的度數(shù)為 ;.

(探索歸納)(2)如圖①,∠AOBm,∠AODnOC為∠BOD的角平分線. 猜想∠AOC的度數(shù)(用含m、n的代數(shù)式表示),并說明理由.

(問題解決)(3)如圖②,若∠AOB20°,∠AOC90°,∠AOD120°.若射線OB繞點(diǎn)O以每秒20°逆時(shí)針旋轉(zhuǎn),射線OC繞點(diǎn)O以每秒10°順時(shí)針旋轉(zhuǎn),射線OD繞點(diǎn)O每秒30°順時(shí)針旋轉(zhuǎn),三條射線同時(shí)旋轉(zhuǎn),當(dāng)一條射線與直線OA重合時(shí),三條射線同時(shí)停止運(yùn)動(dòng). 運(yùn)動(dòng)幾秒時(shí),其中一條射線是另外兩條射線夾角的角平分線?

查看答案和解析>>

同步練習(xí)冊答案