【題目】如圖菱形中,,點(diǎn)C坐標(biāo),過點(diǎn)作直線分別交于點(diǎn),交于E,點(diǎn)E在反比例函數(shù)的圖象上,若和(即圖中兩陰影部分)的面積相等,則的值為_______.
【答案】
【解析】
先說明△OBC為等邊三角形,連接BD;再由等邊三角形即等腰三角形的性質(zhì)說明△ACD是直角三角形,然后由S△BEF=S△DFO,S△BED = S△BEF + S△BFD,S △BOD = S△BFD +S△OFD,可得出S △BED = S△BOD,然后求出BE的長,再求出E點(diǎn)坐標(biāo),將點(diǎn)E代入反比例函數(shù)即可求出k的值.
解:連接BD
∵菱形中,
∴△BCO為等邊三角形
∵點(diǎn)C的坐標(biāo)為(-2,0),
∴BC=OB=OC=OD=2,
∴∠OBD=∠ODB,
又∵∠COB=60°,
∴∠OBD=∠ODB=30°,∠BCO=60°
∴∠CBD=90°
∴點(diǎn)B的坐標(biāo)為(-1, ),
∴BD=2
∵S△BEF=S△DFO
∴S△BED = S△BEF + S△BFD,S △BOD = S△BFD +S△OFD
∴S△BED = S△BOD= ,解得BE=1,即E為BC的中點(diǎn)
∴E的坐標(biāo)為(- ,)
將E (- ,)代入得k=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某乒乓球館使用發(fā)球機(jī)進(jìn)行輔助訓(xùn)練,出球口在桌面中線端點(diǎn)A處的正上方,假設(shè)每次發(fā)出的乒乓球的運(yùn)動(dòng)路線固定不變,且落在中線上,在乒乓球運(yùn)行時(shí),設(shè)乒乓球與端點(diǎn)A的水平距離為x(米),與桌面的高度為y(米),經(jīng)多次測試后,得到如下部分?jǐn)?shù)據(jù):
x/米 | 0 | 0.2 | 0.4 | 0.6 | 1 | 1.4 | 1.6 | 1.8 | … |
y/米 | 0.24 | 0.33 | 0.4 | 0.45 | 0.49 | 0.45 | 0.4 | 0.33 | … |
(1)由表中的數(shù)據(jù)及函數(shù)學(xué)習(xí)經(jīng)驗(yàn),求出y關(guān)于x的函數(shù)解析式;
(2)試求出當(dāng)乒乓球落在桌面時(shí),其落點(diǎn)與端點(diǎn)A的水平距離是多少米?
(3)當(dāng)乒乓球落在桌面上彈起后,y與x之間滿足.
①用含a的代數(shù)式表示k;
②已知球網(wǎng)高度為0.14米,球桌長(1.4×2)米.若a=-0.5,那么乒乓球彈起后,是否有機(jī)會(huì)在某個(gè)擊球點(diǎn)可以將球沿直線扣殺到端點(diǎn)A?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=-2x+mx+n經(jīng)過點(diǎn)A(0,2),B(3,-4).
(1)求該拋物線的函數(shù)表達(dá)式及對(duì)稱軸;
(2)設(shè)點(diǎn)B關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為C,點(diǎn)D是拋物線對(duì)稱軸上一動(dòng)點(diǎn),記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)),如果直線CD與圖象G有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求點(diǎn)D縱坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,BD是角平分線,以點(diǎn)D為圓心,DA為半徑的⊙D與AC相交于點(diǎn)E
(1)求證:BC是⊙D的切線;
(2)若AB=5,BC=13,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,臺(tái)風(fēng)中心位于點(diǎn)P,并沿東北方向PQ移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為30千米/時(shí),受影響區(qū)域的半徑為200千米,B市位于點(diǎn)P的北偏東75°方向上,距離點(diǎn)P 320千米處.
(1) 說明本次臺(tái)風(fēng)會(huì)影響B市;
(2)求這次臺(tái)風(fēng)影響B市的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過點(diǎn).
()分別求這兩個(gè)函數(shù)的表達(dá)式.
()將直線向上平移個(gè)單位長度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點(diǎn)E(點(diǎn)E在第四象限),使得E、D、B為頂點(diǎn)的三角形與以A、O、C為頂點(diǎn)的三角形相似,求E點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點(diǎn)F,使得四邊形ABEF為平行四邊形?若存在,請(qǐng)求出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測量某廣告牌的寬度(圖中線段MN的長).直線MN垂直于地面,垂足為點(diǎn)P,在地面A處測得點(diǎn)M的仰角為60°,點(diǎn)N的仰角為45°,在B處測得點(diǎn)M的仰角為30°,AB=5米.且A、B、P三點(diǎn)在一直線上,請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及率越來越高以及移動(dòng)支付的快捷高效性,中國移動(dòng)支付在世界處于領(lǐng)先水平.為了解人們平時(shí)最喜歡用哪種移動(dòng)支付方式,因此在某步行街對(duì)行人進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查結(jié)果分別整理的不完整的統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
移動(dòng)支付方式 | 支付寶 | 微信 | 其他 |
人數(shù)/人 |
| 200 | 75 |
請(qǐng)你根據(jù)上述統(tǒng)計(jì)表和統(tǒng)計(jì)圖提供的信息.完成下列問題:
(1)在此次調(diào)查中,使用支付寶支付的人數(shù);
(2)求表示微信支付的扇形所對(duì)的圓心角度數(shù);
(3)某天該步行街人流量為10萬人,其中30%的人購物并選擇移動(dòng)支付,請(qǐng)你依據(jù)此次調(diào)查獲得的信息估計(jì)一下當(dāng)天使用微信支付的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com