【題目】如圖1,點(diǎn)A是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)A作x軸的垂線PA交雙曲線于點(diǎn)P,連接OP.
(1)當(dāng)點(diǎn)A在x軸上的正方向上運(yùn)動(dòng)時(shí),的面積是否發(fā)生變化?若不變,請求出的面積;若變化,請說明理由.
(2)如圖2,在x軸上點(diǎn)A的右側(cè)有一點(diǎn)D,過點(diǎn)D作x軸的垂線DB交雙曲線于點(diǎn)B,連接BO交AP于點(diǎn)C,設(shè)的面積為,梯形BCAD的面積為,則與的大小關(guān)系是________(選填“>”“=”或“<”)
(3)如圖3,PO的延長線與雙曲線的另一個(gè)交點(diǎn)是F,作FH垂直于x軸,垂足為H,連接AF,PH,試說明四邊形APHF的面積為常數(shù).
【答案】(1)的面積不變,;(2)>;(3)見解析.
【解析】
(1)由于點(diǎn)A是x正半軸上的動(dòng)點(diǎn),點(diǎn)P始終在雙曲線上,根據(jù)反比例函數(shù)中比例系數(shù)k的幾何意義,可以得出的面積是否發(fā)生變化;(2)利用(1)中的結(jié)論,求出和的面積,由是公共部分即可得出與的大小關(guān)系;(3)由雙曲線的對稱性可知,四邊形APHF是平行四邊形,的面積為常數(shù),可得四邊形APFH的面積也是常數(shù).
(1)的面積不變.根據(jù)反比例函數(shù)中比例系數(shù)k的幾何意義,
得:.
(2)由(1)知
∴,
所以.
(3)由已知條件可知四邊形APHF是平行四邊形,則AH,PF互相平分并交于點(diǎn)O,由(1)知,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組研究某型號冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當(dāng)溫度達(dá)到設(shè)定溫度時(shí),制冷停止,此后冷柜中的溫度開始逐漸上升,當(dāng)上升到時(shí),制冷開始,溫度開始逐漸下降,當(dāng)冷柜自動(dòng)制冷至時(shí),制冷再次停止,……,按照以上方式循環(huán)進(jìn)行.
同學(xué)們記錄了44內(nèi)15個(gè)時(shí)間點(diǎn)冷柜中的溫度隨時(shí)間的變化情況,制成下表:
(1)通過分析發(fā)現(xiàn),冷柜中的溫度是時(shí)間的函數(shù).
①當(dāng)時(shí),寫出一個(gè)符合表中數(shù)據(jù)的函數(shù)解析式 ;
②當(dāng)時(shí),寫出一個(gè)符合表中數(shù)據(jù)的函數(shù)解析式 ;
(2)的值為 ;
(3)如圖,在直角坐標(biāo)系中,已描出了上表中部分?jǐn)?shù)據(jù)對應(yīng)的點(diǎn),請描出剩余對應(yīng)的點(diǎn),并畫出時(shí)溫度隨時(shí)間變化的函數(shù)圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),點(diǎn).是邊上的一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),沿著折疊該紙片,得點(diǎn)的對應(yīng)點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在第一象限,且滿足時(shí),求點(diǎn)的坐標(biāo);
(2)如圖2,當(dāng)為中點(diǎn)時(shí),求的長;
(3)當(dāng)時(shí),直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是反比例函數(shù)圖象上的一點(diǎn),過點(diǎn)作軸于點(diǎn),連接,的面積為2.點(diǎn)的坐標(biāo)為.若一次函數(shù)的圖象經(jīng)過點(diǎn),交雙曲線的另一支于點(diǎn),交軸點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若為軸上的一個(gè)動(dòng)點(diǎn),且的面積為5,請求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處,折痕與BC交于點(diǎn)O.
(1)求證:△OCP∽△PDA;
(2)若PO:PA=1:2,則邊AB的長是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,生才能進(jìn)入教室?
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩函數(shù):反比例函數(shù)和二次函數(shù)y=x2+x+a.
(1)若兩個(gè)函數(shù)的圖象都經(jīng)過點(diǎn)(2,2).
①求兩函數(shù)的表達(dá)式;
②證明反比例函數(shù)的圖象經(jīng)過二次函數(shù)圖象的頂點(diǎn).
(2)若二次函數(shù)y=x2+x+a的圖象與x軸有兩個(gè)不同的交點(diǎn),是否存在實(shí)數(shù)a,使方程x2+x+a=0的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于﹣1?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸、y軸相交于P、Q兩點(diǎn),與的圖象相交于兩點(diǎn),連接OA,OB,給出下列結(jié)論:①;②;③;④不等式的解集是或,其中正確的是( )
A.②③B.③④C.①②③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現(xiàn)把它裁剪成一個(gè)鄰邊之比為2:5的矩形紙片EFGH和正方形紙片PMNQ,裁剪時(shí),矩形紙片的較長邊在BC上,正方形紙片一邊在矩形紙片的較長邊EH上,其余頂點(diǎn)均分別在AB,AC上,具體裁剪方式如圖所示。
(1)求矩形紙片較長邊EH的長;
(2)裁剪正方形紙片時(shí),小聰同學(xué)是按以下方法進(jìn)行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過該中位線兩端點(diǎn)向邊EH所作的垂線剪兩刀,請你通過計(jì)算,判斷小聰?shù)募舴ㄊ欠裾_.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com