【題目】矩形ABCD中,AB=10,BC=3,E為AB邊的中點,P為CD邊上的點,且△AEP是腰長為5的等腰三角形,則DP=_____________.

【答案】149

【解析】試題首先根據(jù)題意畫出圖形,共分3種情況,畫出圖形后根據(jù)勾股定理即可算出DP的長.

解:(1)如圖1,當AE=EP=5時,

PPM⊥AB

∴∠PMB=90°,

四邊形ABCD是矩形,

∴∠B=∠C=90°

四邊形BCPM是矩形,

∴PM=BC=3,

∵PE=5,

∴EM===4

∵EAB中點,

∴BE=5,

∴BM=PC=5﹣4=1

∴DP=10﹣1=9;

2)如圖2,當AE=AP=5時,DP===4

3)如圖3,當AE=EP=5時,

PPF⊥AB,

四邊形ABCD是矩形,

∴∠D=∠DAB=90°,

四邊形BCPF是矩形,

∴PF=AD=3

∵PE=5,

∴EF==4

∵EAB中點,

∴AE=5,

∴DP=AF=5﹣4=1

故答案為:149

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點,其中點B(2,0),交y軸于點C(0,﹣ ).直線y=mx+ 過點B與y軸交于點N,與拋物線的另一個交點是D,點P是直線BD下方的拋物線上一動點(不與點B、D重合),過點P作y軸的平行線,交直線BD于點E,過點D作DM⊥y軸于點M.

(1)求拋物線y= x2+bx+c的表達式及點D的坐標;
(2)若四邊形PEMN是平行四邊形?請求出點P的坐標;
(3)過點P作PF⊥BD于點F,設△PEF的周長為C,點P的橫坐標為a,求C與a的函數(shù)關系式,并求出C的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解放中學為了了解學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機抽取了部分學生進行調查(每人限選1項),現(xiàn)將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下列數(shù)組作為三角形的三條邊長,其中能構成直角三角形的是( )

A. 1, ,3 B. , 5 C. 1.5,22.5 D. , ,

【答案】C

【解析】A12+2≠32,不能構成直角三角形,故選項錯誤;

B、(2+2≠52,不能構成直角三角形,故選項錯誤;

C、1.52+22=2.52,能構成直角三角形,故選項正確;

D、(2+22,不能構成直角三角形,故選項錯誤.

故選:C

型】單選題
束】
3

【題目】在RtABC中,C=90°,AC=9,BC=12,則點C到斜邊AB的距離是( )

ABC9D6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論: ①無論x取何值,y2的值總是正數(shù);
②a=1;
③當x=0時,y2﹣y1=4;
④2AB=3AC;
其中正確結論是(

A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:E∠AOB的平分線上一點,EC⊥OA ,ED⊥OB ,垂足分別為C、D.求證:(1)∠ECD=∠EDC;(2)OECD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在小學,我們已經(jīng)初步了解到,長方形的對邊平行且相等,每個角都是90°.如圖,長方形ABCD中,AD=9cm,AB=4cmE為邊AD上一動點,從點D出發(fā),以1cm/s向終點A運動,同時動點P從點B出發(fā),以acm/s向終點C運動,運動的時間為ts.

1)當t=3時,

①求線段CE的長;

②當EP平分∠AEC時,求a的值;

2)若a=1,CEPCE為腰的等腰三角形,t的值;

3)連接DP,直接寫出點C與點E關于DP對稱時的at的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AC與BD相交于點O,AB=AC,延長BC到點E,使CE=BC,連接AE,分別交BD、CD于點F、G.
(1)求證:△ADB≌△CEA;
(2)若BD=9,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2).

(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.

查看答案和解析>>

同步練習冊答案