【題目】為了解某社區(qū)居民掌握民法知識(shí)的情況,對(duì)社區(qū)內(nèi)的甲、乙兩個(gè)小區(qū)各500名居民進(jìn)行了測(cè)試,從中各隨機(jī)抽取50名居民的成績(jī)(百分制)進(jìn)行整理、描述、分析,得到部分信息:

a.甲小區(qū)50名居民成績(jī)的頻數(shù)直方圖如下(數(shù)據(jù)分成5組:50x60,60x7070x80,80x90,90x100);

b.圖中,70x80組的前5名的成績(jī)是:79 79 79 78 77

c.圖中,80x90組的成績(jī)?nèi)缦拢?/span>

82

83

84

85

85

86

86

86

86

86

86

86

86

87

87

87

88

88

89

89

d.兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上)、滿分人數(shù)如下表所示:

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

滿分人數(shù)

78.58

84.5

a

b

1

76.92

79.5

90

40%

4

根據(jù)以上信息,回答下列問(wèn)題:

1)求表中a,b的值;

2)請(qǐng)估計(jì)甲小區(qū)500名居民成績(jī)能超過(guò)平均數(shù)的人數(shù);

3)請(qǐng)盡量從多個(gè)角度,分析甲、乙兩個(gè)小區(qū)參加測(cè)試的居民掌握民法知識(shí)的情況.

【答案】186;50% (2310人 (3)見(jiàn)解析

【解析】

1)由眾數(shù)的定義和優(yōu)秀率的計(jì)算公式可求解;

2A小區(qū)500名居民成績(jī)能超過(guò)平均數(shù)的人數(shù):500×=310(人);

3)根據(jù)統(tǒng)計(jì)量:平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率,即可分析甲、乙兩小區(qū)參加測(cè)試的居民掌握民法知識(shí)的情況.

解:(1)∵86出現(xiàn)的次數(shù)最多,

∴眾數(shù)a=86,

優(yōu)秀率b=×100%=50%;

2500×=310(人),

答:甲小區(qū)500名居民成績(jī)能超過(guò)平均數(shù)的人數(shù)為310人;

3)從平均數(shù)看,甲小區(qū)居民掌握民法知識(shí)平均分比乙小區(qū)居民掌握民法知識(shí)的平均分高;

從中位數(shù)看,甲小區(qū)居民掌握民法知識(shí)的情況比乙小區(qū)居民掌握民法知識(shí)的情況好;

從眾數(shù)看,乙小區(qū)居民掌握民法知識(shí)的情況比甲小區(qū)居民掌握民法知識(shí)的情況好;

從優(yōu)秀率看,甲小區(qū)居民掌握民法知識(shí)的成績(jī)優(yōu)秀率比乙小區(qū)居民掌握民法知識(shí)的成績(jī)優(yōu)秀率高.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象過(guò)點(diǎn)A-2,0),B4,0),C04

1)求二次函數(shù)的解析式;

2)如圖,當(dāng)點(diǎn)PAC的中點(diǎn)時(shí),在線段PB上是否存在點(diǎn)M,使得∠BMC=90°?若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

3)點(diǎn)K在拋物線上,點(diǎn)DAB的中點(diǎn),直線KD與直線BC的夾角為銳角,且tan=,求點(diǎn)K的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年植樹(shù)節(jié)期間,某景觀園林公司購(gòu)進(jìn)一批成捆的兩種樹(shù)苗,每捆種樹(shù)苗比每捆種樹(shù)苗多10棵,每捆種樹(shù)苗和每捆種樹(shù)苗的價(jià)格分別是630元和600元,而每棵種樹(shù)苗和每棵種樹(shù)苗的價(jià)格分別是這一批樹(shù)苗平均每棵價(jià)格的0.9倍和1.2倍.

1)求這一批樹(shù)苗平均每棵的價(jià)格是多少元?

2)如果購(gòu)進(jìn)的這批樹(shù)苗共5500棵,種樹(shù)苗至多購(gòu)進(jìn)3500棵,為了使購(gòu)進(jìn)的這批樹(shù)苗的費(fèi)用最低,應(yīng)購(gòu)進(jìn)種樹(shù)苗和種樹(shù)苗各多少棵?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘數(shù)學(xué)家歐多克索斯在深入研究比例理論時(shí),提出了分線段的“中末比”問(wèn)題:點(diǎn)G將一線段分為兩線段,,使得其中較長(zhǎng)的一段是全長(zhǎng)與較短的段的比例中項(xiàng),即滿足,后人把這個(gè)數(shù)稱為“黃金分割”數(shù),把點(diǎn)G稱為線段的“黃金分割”點(diǎn).如圖,在中,已知,,若D,E是邊的兩個(gè)“黃金分割”點(diǎn),則的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò),,三點(diǎn).

1)求該拋物線的解析式;

2)經(jīng)過(guò)點(diǎn)B的直線交y軸于點(diǎn)D,交線段于點(diǎn)E,若

①求直線的解析式;

②已知點(diǎn)Q在該拋物線的對(duì)稱軸l上,且縱坐標(biāo)為1,點(diǎn)P是該拋物線上位于第一象限的動(dòng)點(diǎn),且在l右側(cè).點(diǎn)R是直線上的動(dòng)點(diǎn),若是以點(diǎn)Q為直角頂點(diǎn)的等腰直角三角形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠C=90°,AC=BC,點(diǎn)P在線段BA的延長(zhǎng)線上,作PDAC,交AC的延長(zhǎng)線于點(diǎn)D,點(diǎn)D關(guān)于直線AB的對(duì)稱點(diǎn)為E,連接PE并延長(zhǎng)PE到點(diǎn)F,使EF=AC,連接CF

1)依題意補(bǔ)全圖1;

2)求證:AD=CF

3)若AC=2,點(diǎn)Q在直線AB上,寫(xiě)出一個(gè)AQ的值,使得對(duì)于任意的點(diǎn)P總有QD=QF,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小麗為更好的掌握一元二次方程根的判斷情況,兩人玩一個(gè)游戲:

在一個(gè)不透明口袋中裝有分別標(biāo)有 -1,01,2的四個(gè)小球,除了數(shù)字不同之外,這些小球完全一樣.

1)從中任取1球,此小球是非負(fù)數(shù)的概率是__________

2)小明從四球中任取兩球,數(shù)字和記為m,若一元二次方程有實(shí)根,小明贏,無(wú)實(shí)根小麗贏.這個(gè)游戲公平嗎?請(qǐng)你用樹(shù)狀圖或列舉法分別求出小明、小麗贏的概率,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年,國(guó)內(nèi)快遞業(yè)務(wù)快速發(fā)展,由于其便捷、高效,人們?cè)絹?lái)越多地通過(guò)快遞公司代辦點(diǎn)來(lái)代寄包裹.某快遞公司某地區(qū)一代辦點(diǎn)對(duì)60天中每天代寄的包裹數(shù)與天數(shù)的數(shù)據(jù)(每天代寄包裹數(shù)、天數(shù)均為整數(shù))統(tǒng)計(jì)如下:

1)求該數(shù)據(jù)中每天代寄包裹數(shù)在范圍內(nèi)的天數(shù);

2)若該代辦點(diǎn)對(duì)顧客代寄包裹的收費(fèi)標(biāo)準(zhǔn)為:重量小于或等于1千克的包裹收費(fèi)8元;重量超1千克的包裹,在收費(fèi)8元的基礎(chǔ)上,每超過(guò)1千克(不足1千克的按1千克計(jì)算)需再收取2元.

①某顧客到該代辦點(diǎn)寄重量為1.6千克的包裹,求該顧客應(yīng)付多少元費(fèi)用?

②這60天中,該代辦點(diǎn)為顧客代寄的包表中有一部分重量超過(guò)2千克,且不超過(guò)5千克.現(xiàn)從中隨機(jī)抽取40件包裹的重量數(shù)據(jù)作為樣本,統(tǒng)計(jì)如下:

重量G(單位:千克)

件數(shù)(單位:件)

15

10

15

求這40件包裹收取費(fèi)用的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)操作發(fā)現(xiàn)

如圖①,在中,,點(diǎn)D上一點(diǎn),沿折疊,使得點(diǎn)C恰好落在上的點(diǎn)E處.則的數(shù)量關(guān)系為______;________;

2)問(wèn)題解決

如圖②,若(1)中,其他條件不變,請(qǐng)猜想之間的關(guān)系,并證明你的結(jié)論;

3)類(lèi)比探究

如圖③,在四邊形中,,連接,點(diǎn)E上一點(diǎn),沿折疊使得點(diǎn)D正好落在上的點(diǎn)F處,若,直接寫(xiě)出的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案