【題目】如圖,,是正方形的對角線上的兩點(diǎn),,,則四邊形的周長是______.
【答案】
【解析】
連接BD交AC于點(diǎn)O,則可證得OE=OF,OD=OB,可證四邊形BEDF為平行四邊形,且BD⊥EF,可證得四邊形BEDF為菱形;根據(jù)勾股定理計(jì)算DE的長,可得結(jié)論.
如圖,連接BD交AC于點(diǎn)O,
∵四邊形ABCD為正方形,
∴BD⊥AC,OD=OB=OA=OC,
∵AE=CF=3,
∴OAAE=OCCF,即OE=OF,
∴四邊形BEDF為平行四邊形,且BD⊥EF,
∴四邊形BEDF為菱形,
∴DE=DF=BE=BF,
∵AC=BD=12,
∴DO=AO=
OE=OF=,
由勾股定理得:DE==,
∴四邊形BEDF的周長=4DE=4×3=12,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖,在△ABD中,BA=BD.在BD的延長線上取點(diǎn)E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度數(shù).
答案:∠DAC=45°
思考:(1)如果把以上“問題”中的條件“∠B=45°”去掉,其余條件不變,那么∠DAC的度數(shù)會改變嗎?說明理由;
(2)如果把以上“問題”中的條件“∠B=45°”去掉,再將“∠BAE=90°”改為“∠BAE=n°”,其余條件不變,求∠DAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點(diǎn)E作EG∥AC交CD的延長線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點(diǎn)M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對本校部分學(xué)生進(jìn)行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息,解答下列問題:
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“在線討論”對應(yīng)的扇形圓心角的度數(shù);
(3)該校共有學(xué)生人,請你估計(jì)該校對在線閱讀最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有 人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為 .
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有多少人喜歡籃球項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,AE,DF分別是∠OAD與∠ODC的平分線,AE的延長線與DF相交于點(diǎn)G,則下列結(jié)論:①AG⊥DF;②EF∥AB;③AB=AF;④AB=2EF.其中正確的結(jié)論是( 。
A.①②B.③④C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E,F分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了加強(qiáng)社區(qū)居民對新型冠狀病毒肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵(lì)社區(qū)居民在線參與《新型冠狀病毒防治與預(yù)防知識》作答(滿分100分),社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、數(shù)據(jù)分析.
甲 | 85 | 80 | 95 | 85 | 90 | 95 | 100 | 65 | 75 | 85 |
90 | 90 | 70 | 100 | 90 | 80 | 80 | 90 | 98 | 75 | |
乙 | 80 | 60 | 80 | 85 | 95 | 65 | 90 | 85 | 100 | 80 |
95 | 75 | 80 | 80 | 70 | 100 | 95 | 75 | 90 | 90 |
表1分?jǐn)?shù)統(tǒng)計(jì)表
成績 小區(qū) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲 | 2 | 5 | a | b |
乙 | 3 | 7 | 5 | 5 |
表2:頻數(shù)分布表
統(tǒng)計(jì)量 小區(qū) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲 | 85.75 | 87.5 | c |
乙 | 83.5 | d | 80 |
表3:統(tǒng)計(jì)量
(1)填空:a= ,b= ,c= ,d= ;
(2)甲小區(qū)共有800人參與答卷,請估計(jì)甲小區(qū)成績大于90分的人數(shù);
(3)對于此次抽樣調(diào)查中測試成績?yōu)?/span>60≤x≤70的居民,社區(qū)鼓勵(lì)他們重新學(xué)習(xí),然后從中隨機(jī)抽取兩名居民進(jìn)行測試,求剛好抽到一個(gè)是甲小區(qū)居民,另一個(gè)是乙小區(qū)居民的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com