【題目】如圖,在等腰ABC中,AB=AC,點(diǎn)DBC上,且AD=AE.

(1)若∠BAC=90°,BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關(guān)系?(不必證明)

【答案】(1)EDC的度數(shù)是15°;
(2)EDC的度數(shù)是15°
(3)EDC與∠BAD的數(shù)量關(guān)系是∠EDC=12BAD.

【解析】

1)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
2)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
3)根據(jù)(1)(2)的結(jié)論猜出即可.

(1)∵∠BAC=90°AB=AC,
∴∠B=C= (180°BAC)=45°
∴∠ADC=B+BAD=45°+30°=75°,
∵∠DAC=BACBAD=90°30°=60°,
AD=AE,
∴∠ADE=AED= (180°DAC)=60°
∴∠EDC=ADCADE=75°60°=15°
答:∠EDC的度數(shù)是15°.
(2)(1)類似:

B=C= (180°BAC)=90°α,
∴∠ADC=B+BAD=90°α+30°=120°α,
∵∠DAC=BACBAD=α30°,
∴∠ADE=AED= (180°DAC)=105°α,
∴∠EDC=ADCADE=(120°α)(105°α)=15°
答:∠EDC的度數(shù)是15°.
(3)EDC與∠BAD的數(shù)量關(guān)系是∠EDC=12BAD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax22amxam22m4的頂點(diǎn)P在一條定直線l上.

1)直接寫出直線l的解析式;

2)若存在唯一的實(shí)數(shù)m,使拋物線經(jīng)過原點(diǎn).

①求此時(shí)的am的值;

②拋物線的對(duì)稱軸與x軸交于點(diǎn)A,B為拋物線上一動(dòng)點(diǎn),以OAOB為邊作□OACB,若點(diǎn)C在拋物線上,求B的坐標(biāo).

3)拋物線與直線l的另一個(gè)交點(diǎn)Q,若a1,直接寫出OPQ的面積的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:

①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大.

其中正確的結(jié)論有( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,補(bǔ)充下列結(jié)論和依據(jù).

∵∠ACE∠D(已知),

∴_____∥______(______________________ )

∵∠ACE∠FEC(已知)

∴______∥______(_ ___ _______)

∵∠AEC∠BOC(已知),

∴_____∥______(___ _____________________)

∵∠BFD∠FOC180°(已知),

∴_____∥______(_____ ____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D是BA延長線上的一點(diǎn),點(diǎn)E是AC的中點(diǎn)。

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)。

DAC的平分線AM。連接BE并延長交AM于點(diǎn)F。

(2)猜想與證明:試猜想AF與BC有怎樣的位置關(guān)系和數(shù)量關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn),分別是邊,上的點(diǎn),且,,相交于點(diǎn),若點(diǎn)的重心.則以下結(jié)論:①線段,的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個(gè);④的面積是面積的.其中一定正確的結(jié)論有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn),分別是邊,上的點(diǎn),點(diǎn)是一動(dòng)點(diǎn).,,.

1)若點(diǎn)在線段上,且,如圖1,則_____________;

2)若點(diǎn)在邊上運(yùn)動(dòng),如圖2所示,請(qǐng)猜想,之間的關(guān)系,并說明理由;

3)若點(diǎn)運(yùn)動(dòng)到邊的延長線上,如圖3所示,則,,之間又有何關(guān)系?請(qǐng)直接寫出結(jié)論,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠A90°,AD18cmBC30cm.點(diǎn)E從點(diǎn)D出發(fā),以1cm/s的速度向點(diǎn)A運(yùn)動(dòng):點(diǎn)F從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,MBC上一點(diǎn)且CM13cm,t_____s秒時(shí),以DM、E、F為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某山區(qū)有若干名中、小學(xué)生因貧困失學(xué)需要捐助,資助一名中學(xué)生的學(xué)習(xí)費(fèi)用需要a元,資助一名小學(xué)生的學(xué)習(xí)費(fèi)用需要b元.某校學(xué)生積極捐款,初中各年級(jí)學(xué)生捐款數(shù)額與其捐助貧困中學(xué)生和小學(xué)生人數(shù)的部分情況如下表:

捐款數(shù)額/元

資助貧困中學(xué)生人數(shù)/名

資助貧困小學(xué)生人數(shù)/名

七年級(jí)

4000

2

4

八年級(jí)

4200

3

3

九年級(jí)

5000

(1)求a,b的值;

(2)九年級(jí)學(xué)生的捐款恰好解決了剩余貧困中小學(xué)生的學(xué)習(xí)費(fèi)用,請(qǐng)計(jì)算九年級(jí)學(xué)生可捐助的貧困小學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案