【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當x>﹣1時,y的值隨x值的增大而增大.
其中正確的結論有( )
A.1個 B.2個 C.3個 D.4個
【答案】B
【解析】
試題分析:根據(jù)拋物線的對稱軸為直線x=﹣=2,則有4a+b=0;觀察函數(shù)圖象得到當x=﹣3時,函數(shù)值小于0,則9a﹣3b+c<0,即9a+c<3b;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根據(jù)拋物線開口向下得a<0,于是有8a+7b+2c>0;由于對稱軸為直線x=2,根據(jù)二次函數(shù)的性質(zhì)得到當x>2時,y隨x的增大而減小.
解:∵拋物線的對稱軸為直線x=﹣=2,
∴b=﹣4a,即4a+b=0,(故①正確);
∵當x=﹣3時,y<0,
∴9a﹣3b+c<0,
即9a+c<3b,(故②錯誤);
∵拋物線與x軸的一個交點為(﹣1,0),
∴a﹣b+c=0,
而b=﹣4a,
∴a+4a+c=0,即c=﹣5a,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵拋物線開口向下,
∴a<0,
∴8a+7b+2c>0,(故③正確);
∵對稱軸為直線x=2,
∴當﹣1<x<2時,y的值隨x值的增大而增大,
當x>2時,y隨x的增大而減小,(故④錯誤).
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價格(元/件)之間滿足一次函數(shù)關系.
(1)試求:y與x之間的函數(shù)關系式;
(2)這批日用品購進時進價為4元,則當銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連結OE.下列結論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】濟南市地鐵1號線于2019年1月1日起正式通車,在修建過程中,技術人員不斷改進技術,提高工作效率,如在打通一條長600米的隧道時,計劃用若干小時完成,在實際工作過程中,每小時打通隧道長度是原計劃的1.2倍,結果提前2小時完成任務.
(1)求原計劃每小時打通隧道多少米?
(2)如果按照這個速度下去,后面的360米需要多少小時打通?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
①的解x= .
②的解x= .
③的解x= .
④的解x= .
…
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個方程及它們的解.
(2)請你用一個含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,點D在BC上,且AD=AE.
(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關系?(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度數(shù);
(2)若DG⊥AC,垂足為G,∠BAC=90°,試說明:DG平分∠ADC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com