【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長(zhǎng)線相交,交點(diǎn)分別為點(diǎn)E,F(xiàn),DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N.
(1)如圖1,若CE=CF,求證:DE=DF;
(2)如圖2,在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過程中:
①探究三條線段AB,CE,CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長(zhǎng).
【答案】
(1)
證明:∵∠ACB=90°,AC=BC,AD=BD,
∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,
∴∠DCE=∠DCF=135°,
在△DCE與△DCF中, ,
∴△DCE≌△DCF,
∴DE=DF;
(2)
解:①∵∠DCF=∠DCE=135°,
∴∠CDF+∠F=180°﹣135°=45°,
∵∠CDF+∠CDE=45°,
∴∠F=∠CDE,
∴△CDF∽△CED,
∴ ,
即CD2=CECF,
∵∠ACB=90°,AC=BC,AD=BD,
∴CD= AB,
∴AB2=4CECF;
②如圖,過D作DG⊥BC于G,
則∠DGN=∠ECN=90°,CG=DG,
當(dāng)CE=4,CF=2時(shí),
由CD2=CECF得CD=2 ,
∴在Rt△DCG中,CG=DG=CDsin∠DCG=2 ×sin45°=2,
∵∠ECN=∠DGN,∠ENC=∠DNG,
∴△CEN∽△GDN,
∴ =2,
∴GN= CG= ,
∴DN= = = .
【解析】(1)根據(jù)等腰直角三角形的性質(zhì)得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根據(jù)全等三角形的性質(zhì)即可的結(jié)論;(2)①證得△CDF∽△CED,根據(jù)相似三角形的性質(zhì)得到 ,即CD2=CECF,根據(jù)等腰直角三角形的性質(zhì)得到CD= AB,于是得到AB2=4CECF;②如圖,過D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,當(dāng)CE=4,CF=2時(shí),求得CD=2 ,推出△CEN∽△GDN,根據(jù)相似三角形的性質(zhì)得到 =2,根據(jù)勾股定理即可得到結(jié)論.
【考點(diǎn)精析】掌握等腰直角三角形和勾股定理的概念是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D的切線分別交AB,AC的延長(zhǎng)線于E,F(xiàn),連接BD.
(1)求證:AF⊥EF;
(2)若AC=6,CF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校開展的“書香校園”活動(dòng)受到同學(xué)們的廣泛關(guān)注,為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計(jì)圖表.
學(xué)生借閱圖書的次數(shù)統(tǒng)計(jì)表:
借閱圖書的次數(shù) | 次 | 次 | 次 | 次 | 次及以上 |
人數(shù) |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問題:
(1) , ;
(2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(3)若該校共有名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書次及以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運(yùn)貨10t;用1輛A型車和2輛B型車裝滿貨物一次可運(yùn)貨11t.某物流公司現(xiàn)有35t貨物,計(jì)劃同時(shí)租用A型車a輛,B型車b輛,一次運(yùn)完,且恰好每輛車都裝滿貨物.根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運(yùn)貨多少噸?
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請(qǐng)選出最省錢的租車方案,并求出最少租車費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】整式運(yùn)算
(1)(x4)3÷(﹣x2)2+(﹣x2)3x2
(2)(x+3)(x﹣5)+2x(3x﹣1)
(3)(2b﹣a)(2a+b)﹣2(3a﹣2b)2
(4).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,O是AC、BD的交點(diǎn),過點(diǎn)O 與AC垂直的直線交邊AD于點(diǎn)E,若□ABCD的周長(zhǎng)為22cm,則△CDE的周長(zhǎng)為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)P是Rt△ABC斜邊AB上一動(dòng)點(diǎn)(不與A、B重合),分別過A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系,QE與QF的數(shù)量關(guān)系.
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫出圖形并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A′的坐標(biāo)是(﹣2,2),現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′、C′分別是B、C的對(duì)應(yīng)點(diǎn).
(1)請(qǐng)畫出平移后的△A′B′C′(不寫畫法);
(2)并直接寫出點(diǎn)B′、C′的坐標(biāo):B′( )、C′( );
(3)若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛轎車從甲城駛往乙城,同時(shí)一輛卡車從乙城駛往甲城,兩車沿相同路線勻速行駛,轎車到達(dá)乙城停留一段時(shí)間后,按原路原速返回甲城;卡車到達(dá)甲城比轎車返回甲城早0.5小時(shí),轎車比卡車每小時(shí)多行駛60千米,兩車到達(dá)甲城弧均停止行駛,兩車之間的路程y(千米)與轎車行駛時(shí)間t(小時(shí))的函數(shù)圖象如圖所示,請(qǐng)結(jié)合圖象提供的信息解答下列問題:
(1)請(qǐng)直接寫出甲城和乙城之間的路程,并求出轎車和卡車的速度;
(2)求轎車在乙城停留的時(shí)間,并直接寫出點(diǎn)D的坐標(biāo);
(3)請(qǐng)直接寫出轎車從乙城返回甲城過程中離甲城的路程s(千米)與轎車行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com