【題目】如圖,已知半圓⊙O的直徑AB10,弦CDAB,且CD8,E為弧CD的中點,點P在弦CD上,聯(lián)結(jié)PE,過點EPE的垂線交弦CD于點G,交射線OB于點F

1)當點F與點B重合時,求CP的長;

2)設CPx,OFy,求yx的函數(shù)關(guān)系式及定義域;

3)如果GPGF,求△EPF的面積.

【答案】1CP2;(2;(3

【解析】

1)如圖1,連接EO,交弦CD于點H,根據(jù)垂徑定理得EOAB,由勾股定理計算,可得EH的長,證明∠HPE=∠HGE45°,則PEGE.從而可得結(jié)論;

2)如圖2,連接OE,證明△PEH∽△EFO,列比例式可得結(jié)論;

3)如圖3,作PQAB,分別計算PEEF的長,利用三角形面積公式可得結(jié)論.

1)連接EO,交弦CD于點H,

E為弧CD的中點,

EOAB

CDAB,

OHCD,

CH

連接CO,

AB10,CD8,

CO5,CH4

,

EHEOOH2,

∵點F與點B重合,

∴∠OBE=∠HGE45°

PEBE,

∴∠HPE=∠HGE45°

PEGE,

PHHG2

CPCHPH422;

2)如圖2,連接OE,交CDH

∵∠PEH+OEF90°,∠OFE+OEF90°,

∴∠PEH=∠OFE,

∵∠PHE=∠EOF90°,

∴△PEH∽△EFO

,

EH2FOy,PH4x,EO5

,

3)如圖3,過點PPQAB,垂足為Q,

GPGF

∴∠GPF=∠GFP,

CDAB,

∴∠GPF=∠PFQ

PEEF,

PQPE,

由(2)可知,△PEH∽△EFO,

,

PQOH3,

PE3

EH2,

,

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標系中,O為原點,A2,0),B(-2,0),Dy軸上的一個動點,∠ADC=90°(A、D、C按順時針方向排列) BC與經(jīng)過A、B、D三點的⊙M交于點E,DE平分∠ADC,連結(jié)AEBD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.

1)求證:ΔABC是半直角三角形;

2)求證:∠DEC=∠DEA;

3)若點D的坐標為(08),求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探測氣球甲從海拔處出發(fā),與此同時,探測氣球乙從海拔處出發(fā).圖中的分別表示甲、乙兩個氣球所在位置的海拔(單位:)與上升時間(單位:)之間的關(guān)系.

1)求的函數(shù)解析式;

2)探測氣球甲從出發(fā)點上升到海拔處的過程中,是否存在某一時刻使得探測氣球甲、乙位于同一高度?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B35°,CD是斜邊AB上的中線,如果將△BCD沿CD所在直線翻折,點B落在點E處,聯(lián)結(jié)AE,那么∠CAE的度數(shù)是_____度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】受“新冠”疫情影響,全國中小學延遲開學,很多學校都開展起了“線上教學”,市場上對手寫板的需求激增.重慶某廠家準備3月份緊急生產(chǎn)A,B兩種型號的手寫板,若生產(chǎn)20A型號和30B型號手寫板,共需要投入36000元;若生產(chǎn)30A型號和20B型號手寫板,共需要投入34000元.

1)請問生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本?

2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設生產(chǎn)了A型號手寫板a個,求w關(guān)于a的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、FG、H分別在矩形ABCD的邊AB、BCCD、DA(不包括端點)上運動,且滿足

(1)求證:;

(2)試判斷四邊形EFGH的形狀,并說明理由.

(3)請?zhí)骄克倪呅?/span>EFGH的周長一半與矩形ABCD一條對角線長的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某漁船在海面上朝正西方向以20海里/時勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達B處,此時觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

同步練習冊答案