【題目】對(duì)于任意實(shí)數(shù) , ,定義關(guān)于“ ”的一種運(yùn)算如下: .例如: , .
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.
【答案】
(1)
解:依題可得:3x=2×3-x=-2011.
∴x=2017.
(2)
解:依題可得:x3=2x-3<5.
∴x<4.
即x的取值范圍為x<4.
【解析】(1)根據(jù)題意列方程2×3-x=-2011求解即可.
(2)根據(jù)題意列不等式2x-3<5求解即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用解一元一次方程的步驟和一元一次不等式的解法的相關(guān)知識(shí)可以得到問題的答案,需要掌握先去分母再括號(hào),移項(xiàng)變號(hào)要記牢.同類各項(xiàng)去合并,系數(shù)化“1”還沒好.求得未知須檢驗(yàn),回代值等才算了;步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前中學(xué)生帶手機(jī)進(jìn)校園現(xiàn)象越來越受到社會(huì)關(guān)注,針對(duì)這種現(xiàn)象,某校數(shù)學(xué)興趣小組的同學(xué)隨機(jī)調(diào)查了學(xué)校若干名家長對(duì)“中學(xué)生帶手機(jī)”現(xiàn)象的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.贊成;D.反對(duì)),并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;
(2)求出圖2中扇形C所對(duì)的圓心角的度數(shù),并將圖1補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)1萬名中學(xué)生家長中有多少名家長持反對(duì)態(tài)度;
(4)在此次調(diào)查活動(dòng)中,初三(1)班和初三(2)班各有2位家長對(duì)中學(xué)生帶手機(jī)持反對(duì)態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家校活動(dòng),用列表法或畫樹狀圖的方法求選出的2人來自不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,∠C=90°,AB 的中垂線交直線 BC 于 D,若∠BAD﹣∠DAC=22.5°,則∠B 的度數(shù)是_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)“走基層”欄目的一位記者乘汽車赴320km外的農(nóng)村采訪,全程的前一部分為高速公
路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時(shí)間x(單位:h)之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.鄉(xiāng)村公路總長為90km
C.汽車在鄉(xiāng)村公路上的行駛速度為60km/h
D.該記者在出發(fā)后5h到達(dá)采訪地
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)P的坐標(biāo)為 ,直線y= x+b過點(diǎn)A,交y軸于點(diǎn)B,以點(diǎn)P為圓心,以PA為半徑的圓交x軸于點(diǎn)C.
(1)判斷點(diǎn)B是否在⊙P上?說明理由.
(2)求過A、B、C三點(diǎn)的拋物線的解析式;并求拋物線與⊙P另外一個(gè)交點(diǎn)為D的坐標(biāo).
(3)⊙P上是否存在一點(diǎn)Q,使以A、P、B、Q為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度數(shù).(寫出必要過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAD=∠BAD,DE⊥AB于E,點(diǎn)F在邊AC上,連接DF.
(1)求證:AC=AE;
(2)若AC=8,AB=10,且△ABC的面積等于24,求DE的長;
(3)若CF=BE,直接寫出線段AB,AF,EB的數(shù)量關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com