【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,對稱軸與x軸交于點D.
(1)求直線BC的解析式;
(2)如圖2,點P為直線BC上方拋物線上一點,連接PB、PC.當△PBC的面積最大時,在線段BC上找一點E(不與B、C重合),使PE+BE的值最小,求點P的坐標和PE+BE的最小值;
(3)如圖3,點G是線段CB的中點,將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經過點D,y′的頂點為F.在拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為直角三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
【答案】(1)直線BC的解析式為y=﹣x+;(2)P(,),PE+BE=;(3)存在,Q(﹣1,)或(﹣1,),理由見解析
【解析】
(1)根據二次函數的解析式先求出點C、點B的坐標,然后利用待定系數法即可求出直線BC的解析式;
(2)如圖2中,過點P作PM⊥x軸于點M,交直線BC于點F,過點E作EN⊥x軸于點N,設P(a,﹣a2+a+),則F(a,﹣a+)則可得 PF=﹣a2+a,繼而得S△PBC=﹣a2+a,根據二次函數的性質可得當a=時,S△PBC最大,可得點P坐標,由直線BC的解析式為y=﹣x+可得∠CBO=30°,繼而可得PE+BE=PE+EN,根據兩點之間線段最短和垂線段最短,則當P,E,N三點共線且垂直于x軸時,PE+BE值最小,據此即可求得答案;
(3)由題意可得D(1,0),G(,),繼而可得直線DG解析式,根據拋物線y=﹣x2+x+=﹣(x﹣1)2+沿x軸正方向平移得到新拋物線y′,y′經過點D,可得y'═﹣(x+1)2+,從而可得對稱軸為x=﹣1,然后分∠QDG=90°或∠QGD=90°,∠GQD=90°三種情況進行討論即可得.
(1)當x=0時,y=﹣x2+x+=,
∴點C的坐標為(0,);
當y=0時,有﹣x2+x+=0,
解得:x1=﹣1,x2=3,
∴點B的坐標為(3,0),
設直線BC的解析式為y=kx+b(k≠0),
將B(3,0)、C(0,)代入y=kx+b,得:
,解得:,
∴直線BC的解析式為y=﹣x+;
(2)如圖2中,過點P作PM⊥x軸于點M,交直線BC于點F,過點E作EN⊥x軸于點N,
設P(a,﹣a2+a+),則F(a,﹣a+),
∴PF=﹣a2+a,
∴S△PBC=×PF×3=﹣a2+a,
∴當a=時,S△PBC最大,
∴P(,),
∵直線BC的解析式為y=﹣x+,
∴∠CBO=30°,EN⊥x軸,
∴EN=BE,
∴PE+BE=PE+EN,
∴根據兩點之間線段最短和垂線段最短,則當P,E,N三點共線且垂直于x軸時,PE+BE值最小,
∴PE+BE=PE+EN=PN=;
(3)∵D是對稱軸直線x=1與x軸的交點,G是BC的中點,
∴D(1,0),G(,),
∴直線DG解析式y=x﹣,
∵拋物線y=﹣x2+x+=﹣(x﹣1)2+沿x軸正方向平移得到新拋物線y′,y′經過點D,
∴y'═﹣(x+1)2+,
∴對稱軸為x=﹣1,
∵△FGQ為直角三角形,
∴∠QDG=90°或∠QGD=90°,∠GQD=90°(不合題意,舍去),
當∠QDG=90°,設直線QD解析式y=﹣x+b,過D(1,0),
∴0=﹣+b,
b=,
∴y=﹣x+,
當x=﹣1時,y=,
∴Q(﹣1,),
當∠QGD=90°,則直線QD解析式y=﹣x+,
∴當x=﹣1時,y=,
∴Q(﹣1,).
科目:初中數學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O且AB=AC,延長BC至點D,使CD=CA,連接AD交⊙O于點E,連接BE、CE.
(1)求證:△ABE≌△CDE;
(2)填空:
①當∠ABC的度數為 時,四邊形AOCE是菱形;
②若AE=6,EF=4,DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(-3,2),B(-4,-3),C(-1,-1).
(1)①在圖中作出△ABC 關于y軸對稱的△A1B1C1并寫出點C1 的坐標(直接寫答案):C1______;②△A1B1C1 的面積為______.
(2)在y軸上畫出點 P,使 PB+PC 最。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,連接BE,點F、G分別為AD、AC的中點,連接FG.在△ADE繞A旋轉的過程中,當B、D、E三點共線時,AB=,AD=1,則線段FG的長為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別是AD,BC的中點,AF與BE相交于點M,CE與DF相交于點N,QM⊥BE,QN⊥EC相交于點Q,PM⊥AF,PN⊥DF相交于點P,若2BC=3AB,記△ABM和△CDN的面積和為S,則四邊形MQNP的面積為( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,⊙O交BC于點D,交CA的延長線于點E.過點D作DF⊥AC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若AB=4,∠C=30°,求劣弧的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com