【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長(zhǎng).
【答案】
(1)證明:連接OD,如圖所示.
在Rt△ADE中,點(diǎn)O為AE的中心,
∴DO=AO=EO= AE,
∴點(diǎn)D在⊙O上,且∠DAO=∠ADO.
又∵AD平分∠CAB,
∴∠CAD=∠DAO,
∴∠ADO=∠CAD,
∴AC∥DO.
∵∠C=90°,
∴∠ODB=90°,即OD⊥BC.
又∵OD為半徑,
∴BC是⊙O的切線
(2)解:∵在Rt△ACB中,AC=3,BC=4,
∴AB=5.
設(shè)OD=r,則BO=5﹣r.
∵OD∥AC,
∴△BDO∽△BCA,
∴ = ,即 = ,
解得:r= ,
∴BE=AB﹣AE=5﹣ =
【解析】(1)連接OD,由AE為直徑、DE⊥AD可得出點(diǎn)D在⊙O上且∠DAO=∠ADO,根據(jù)AD平分∠CAB可得出∠CAD=∠DAO=∠ADO,由“內(nèi)錯(cuò)角相等,兩直線平行”可得出AC∥DO,再結(jié)合∠C=90°即可得出∠ODB=90°,進(jìn)而即可證出BC是⊙O的切線;(2)在Rt△ACB中,利用勾股定理可求出AB的長(zhǎng)度,設(shè)OD=r,則BO=5﹣r,由OD∥AC可得出 = ,代入數(shù)據(jù)即可求出r值,再根據(jù)BE=AB﹣AE即可求出BE的長(zhǎng)度.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:( ﹣ )÷(1﹣ ),其中x=( )﹣1﹣(2017﹣ )0 , y= sin60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用火柴棒擺出一列正方形圖案,第①個(gè)圖案用了 4 根,第②個(gè)圖案用了 12 根,第③個(gè)圖案用了 24 根,按照這種方式擺下去,擺出第⑥個(gè)圖案用火柴棒的根數(shù)是( )
A. 84 B. 81 C. 78 D. 76
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.
(1)判斷△BEC的形狀,并說(shuō)明理由?
(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F,G分別在邊AB,AD上,則EF的長(zhǎng)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,P是CD上一點(diǎn),
(1)過(guò)點(diǎn)P作AB的垂線段PE;
(2)過(guò)點(diǎn)P作CD的垂線,與AB相交于點(diǎn)F;
(3)將線段PE、PF、FO從小到大排列為_____,這樣排列的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如果點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,那么x=______;
(2)當(dāng)x=______時(shí),點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和是6;
(3)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小,則x的取值范圍是______;
(4)在數(shù)軸上,點(diǎn)M,N表示的數(shù)分別為x,x,我們把x,x之差的絕對(duì)值叫做點(diǎn)M,N之間的距離,即MN="|" x-x|.若點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)O沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)、點(diǎn)F以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),且三個(gè)點(diǎn)同時(shí)出發(fā),那么運(yùn)動(dòng)______秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.
(1)如圖 1,若 CE 恰好是∠ACD 的角平分線,請(qǐng)你猜想此時(shí) CD 是不是∠ECB 的角平分線?只回答出“是”或“不是”即可;
(2)如圖 2,若∠ECD=α,CD 在∠BCE 的內(nèi)部,請(qǐng)你猜想∠ACE 與∠DCB是否相等?并簡(jiǎn)述理由;
(3)在(2)的條件下,請(qǐng)問(wèn)∠ECD 與∠ACB 的和是多少?并簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大小不同的兩個(gè)磁塊,其截面都是等邊三角形,小三角形邊長(zhǎng)是大三角形邊長(zhǎng)的一半,點(diǎn)O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時(shí)針滾動(dòng),當(dāng)由①位置滾動(dòng)到④位置時(shí),線段OA繞點(diǎn)O順時(shí)針轉(zhuǎn)過(guò)的角度是( )
A.240°
B.360°
C.480°
D.540°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com