【題目】阿波羅尼奧斯(Apollonius of Perga,約公元前262-190年),古希臘數(shù)學家,與歐幾里得,阿基米德齊名,他的著作《圓錐曲線論》是古代世界光輝的科學成果.
材料:《圓錐曲線論》里面對拋物線的定義:平面內一個動點到一個定點與一條定直線的距離之比等于1,或者說:平面內一動點到一定點與一條直線的距離相等的軌跡就是拋物線.
問題:已知點,,直線,連接,若點到直線的距離與的長相等,請求出與的關系式.
解:如圖,∵,,
∴
∵,直線,
∴點到直線的距離為
∵點到直線的距離與的長相等,
∴,
平方化簡得,.
若將上述問題中點坐標改為,直線變?yōu)?/span>,按照問題解題思路,試求出與的關系式,并在平面直角坐標系中利用描點法畫出其圖象,你能發(fā)現(xiàn)什么?
科目:初中數(shù)學 來源: 題型:
【題目】為豐富學生的文體生活,育紅學校準備成立“聲樂、演講、舞蹈、足球、籃球”五個社團,要求每個學生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學校對部分學生進行了抽樣調查在整理調查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)被抽查的學生一共有多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)若全校有學生1500人,請你估計全校有意參加“聲樂”社團的學生人數(shù).
(4)從被抽查的學生中隨意選出1人,該學生恰好選擇參加“演講”社團的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網格上有△ABC和△DEF.
(1)這兩個三角形相似嗎?為什么?
(2)請直接寫出∠A的度數(shù) ;
(3)在上邊的網格內再畫一個三角形,使它與△ABC相似,并求出其相似比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果三角形的兩個內角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.
(1)求點A、B的坐標;
(2)設F是軸上一動點,⊙P經過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關系;
(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年的9月3日是中國人民抗日戰(zhàn)爭勝利紀念日,某紅色旅游景區(qū)為紀念抗日戰(zhàn)爭勝利73周年,今年9~10月份,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價16元,這樣按原定票價需花費2000元購買的門票張數(shù),現(xiàn)在只花費了1200元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,該景區(qū)決定對網上購票的個人也采取優(yōu)惠,原定票價經過連續(xù)兩次降價后票價為每張32.4元,求原定票價平均每次的下降率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com