【題目】阿波羅尼奧斯(Apollonius of Perga,約公元前262-190),古希臘數(shù)學家,與歐幾里得,阿基米德齊名,他的著作《圓錐曲線論》是古代世界光輝的科學成果.

材料:《圓錐曲線論》里面對拋物線的定義:平面內一個動點到一個定點與一條定直線的距離之比等于1,或者說:平面內一動點到一定點與一條直線的距離相等的軌跡就是拋物線.

問題:已知點,直線,連接,若點到直線的距離與的長相等,請求出的關系式.

解:如圖,∵,

,直線,

∴點到直線的距離為

∵點到直線的距離與的長相等,

,

平方化簡得,.

若將上述問題中點坐標改為,直線變?yōu)?/span>,按照問題解題思路,試求出的關系式,并在平面直角坐標系中利用描點法畫出其圖象,你能發(fā)現(xiàn)什么?

【答案】,圖象見解析;該圖象為開口向右的拋物線.

【解析】

根據(jù)題意,分別求出∴到直線的距離為,與點到直線的距離與的長相等,列得方程,進行化簡即可,在平面直角坐標系中描點、連線即可.

解:∵,

∴點到直線的距離為.

∵點到直線的距離與的長相等,

.

化簡得

利用描點法作出圖象如圖所示.

發(fā)現(xiàn):該圖象為開口向右的拋物線.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,四邊形為正方形,上一點,將正方形折疊,使點與點重合,折痕為,相交于點,若,.求:

(1)的面積;

(2)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的文體生活,育紅學校準備成立聲樂、演講、舞蹈、足球、籃球五個社團,要求每個學生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學校對部分學生進行了抽樣調查在整理調查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

(1)被抽查的學生一共有多少人?

(2)將條形統(tǒng)計圖補充完整.

(3)若全校有學生1500人,請你估計全校有意參加聲樂社團的學生人數(shù).

(4)從被抽查的學生中隨意選出1人,該學生恰好選擇參加演講社團的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網格上有ABCDEF

1)這兩個三角形相似嗎?為什么?

2)請直接寫出∠A的度數(shù)   ;

3)在上邊的網格內再畫一個三角形,使它與ABC相似,并求出其相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果三角形的兩個內角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準互余三角形”.

(1)若ABC準互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準互余三角形.試問在邊BC上是否存在點E(異于點D),使得ABE也是準互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準互余三角形,求對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.

(1)求點A、B的坐標;

(2)設F是軸上一動點,⊙P經過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的93日是中國人民抗日戰(zhàn)爭勝利紀念日,某紅色旅游景區(qū)為紀念抗日戰(zhàn)爭勝利73周年,今年9~10月份,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價16元,這樣按原定票價需花費2000元購買的門票張數(shù),現(xiàn)在只花費了1200.

(1)求每張門票的原定票價;

(2)根據(jù)實際情況,該景區(qū)決定對網上購票的個人也采取優(yōu)惠,原定票價經過連續(xù)兩次降價后票價為每張32.4元,求原定票價平均每次的下降率.

查看答案和解析>>

同步練習冊答案