【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)60°.
【解析】試題分析:由全等三角形的判定方法:ASA,即可證明:△ABD≌△EDC;
(2)根據(jù)三角形內(nèi)角和定理可求出∠1的度數(shù),進(jìn)而可得到∠2的度數(shù),再根據(jù)△BDC是等腰三角形,即可求出∠BCE的度數(shù).
試題解析:(1)證明:∵AB∥CD,∴∠ABD=∠EDC,
在△ABD和△EDC中,, ∴△ABD≌△EDC(ASA),
(2)解:∵∠ABD=∠EDC=30°,∠A=135°, ∴∠1=∠2=15°, ∵DB=DC,
∴∠DCB=(180°-∠DBC)=75°, ∴∠BCE=75°﹣15°=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
五個(gè)邊長(zhǎng)為的小正方形如圖①放置,要求用兩條線段將它們分割成三部分后把它們拼接成一個(gè)新的正方形.
小辰是這樣思考的:圖①中五個(gè)邊長(zhǎng)為的小正方形的面積的和為,拼接后的正方形的面積也應(yīng)該是,故而拼接后的正方形的邊長(zhǎng)為,因此想到了依據(jù)勾股定理,構(gòu)造長(zhǎng)為的線段,即:,因此想到了兩直角邊分別為和的直角三角形的斜邊正好是,如圖②,進(jìn)而拼接成了一個(gè)便長(zhǎng)為的正方形.
參考上面的材料和小辰的思考方法,解決問(wèn)題:
()五個(gè)邊長(zhǎng)為的小正方形如圖④放置,類似圖③,在圖④中畫出分割線和拼接后的正方形(只要畫出一種即可).
()十個(gè)邊長(zhǎng)為的小正方形如圖⑤放置,類似圖③,在圖⑤中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).
()五個(gè)邊長(zhǎng)為的小正方形如圖⑥放置,類似圖③,在圖⑥中畫出兩條分割線將它們分割成三部分,并畫出拼接后的正方形(只要畫出一種即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)y= 的圖象相交于點(diǎn)A(﹣4,﹣2),B(m,4),與y軸相交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買了前往各地的車票,如圖是用來(lái)制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
若去丙地的車票占全部車票的,則總票數(shù)為______ 張,去丁地的車票有______ 張
若公司采用隨機(jī)抽取的方式發(fā)車票,小胡先從所有的車票中隨機(jī)抽取一張所有車票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?
若有一張車票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來(lái)確定給誰(shuí),其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請(qǐng)問(wèn)這個(gè)規(guī)則對(duì)雙方是否公平?若公平請(qǐng)說(shuō)明理由;若不公平,請(qǐng)通過(guò)計(jì)算說(shuō)明對(duì)誰(shuí)更有利.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點(diǎn)B為圓心的扇形與邊CD相切于點(diǎn)E,扇形的圓心角為60°,點(diǎn)E是CD的中點(diǎn),圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識(shí)了解某廣告牌的高度(圖中GH的長(zhǎng)),經(jīng)測(cè)量知CD=2m,在B處測(cè)得點(diǎn)D的仰角為60°,在A處測(cè)得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)共線,請(qǐng)根據(jù)以上數(shù)據(jù)計(jì)算GH的長(zhǎng)( ,要求結(jié)果精確得到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2 , 其中正確的是( )
A.①②④
B.①③
C.①②③
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,過(guò)等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中, =;
(2)應(yīng)用:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請(qǐng)求出 的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點(diǎn),若BD⊥CE,請(qǐng)直接寫出 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com