【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過(guò)點(diǎn)D分別向AB、AC引垂線(xiàn),垂足分別為點(diǎn)E、F.
(1)如圖①,當(dāng)點(diǎn)D在BC的什么位置時(shí),DE=DF?并證明;
(2)在滿(mǎn)足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?請(qǐng)寫(xiě)出所有的全等三角形(不必證明);
(3)如圖②,過(guò)點(diǎn)C作AB邊上的高CG,請(qǐng)問(wèn)DE、DF、CG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.
【答案】(1)當(dāng)點(diǎn)D在BC的中點(diǎn)上時(shí),DE=DF,證明見(jiàn)解析;(2)有3對(duì)全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;(3)CG=DE+DF,證明見(jiàn)解析.
【解析】
試題分析:(1)因?yàn)楫?dāng)△BED和△CFD時(shí),DE=DF,所以當(dāng)點(diǎn)D在BC中點(diǎn)時(shí),可利用AAS判定△BED和△CFD全等,利用全等三角形的性質(zhì)可得DE=DF,
(2)在(1)的結(jié)論下:DE=DF,BD=CD, 利用SSS可判定△ADB≌△ADC,
利用HL可判定△AED≌△AFD,利用AAS可判定△BED≌△CFD,所以有3對(duì)全等三角形.
(3)連接AD,根據(jù)三角形的面積公式即可求證.
(1)當(dāng)點(diǎn)D在BC的中點(diǎn)上時(shí),DE=DF,
證明:∵D為BC中點(diǎn),
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和CFD中,
∴△BED≌△CFD(AAS),
∴DE=DF.
(2)
有3對(duì)全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,
(3)CG=DE+DF,
證明:連接AD,
因?yàn)?/span>,
所以,
因?yàn)?/span>AB=AC,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠BOC=135°,將一個(gè)含45°角的直角三角尺的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線(xiàn)AB重合,另外兩條直角邊都在直線(xiàn)AB的下方.
(1)將圖1中的三角尺繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖2所示,此時(shí)∠BOM=_____;在圖2中,OM是否平分∠CON?請(qǐng)說(shuō)明理由;
(2)緊接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)將圖1中的三角板繞點(diǎn)O按每秒5°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線(xiàn)ON恰好平分銳角∠AOC,則t的值為_____(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線(xiàn) 先向右平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度后得到新的拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求證:過(guò)點(diǎn)A、F的直線(xiàn)垂直平分線(xiàn)段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的三個(gè)頂點(diǎn)A、B、D分別在長(zhǎng)方形 EFGH的邊EF、FG、EH上,且C到HG的距離是1,到點(diǎn)H,G的距離分別為,,則正方形ABCD的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(數(shù)學(xué)閱讀)
如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上的任意一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小堯的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
(推廣延伸)
如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線(xiàn)上時(shí),其余條件不變,請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法,猜想PD,PE與CF的數(shù)量關(guān)系,并證明.
(解決問(wèn)題)
如圖4,在平面直角坐標(biāo)系中有兩條直線(xiàn)l1:y=-x+3,l2:y=3x+3,l1,l2與x軸的交點(diǎn)分別為A,B.
(1)兩條直線(xiàn)的交點(diǎn)C的坐標(biāo)為 ;
(2)說(shuō)明△ABC是等腰三角形;
(3)若l2上的一點(diǎn)M到l1的距離是1,運(yùn)用上面的結(jié)論,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過(guò)D點(diǎn)的直線(xiàn)GF交AC于F,交AC的平行線(xiàn)BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)一班小張陪媽媽到水果市場(chǎng)購(gòu)買(mǎi)水果,在一個(gè)水果攤前聽(tīng)到媽媽與售貨員的對(duì)話(huà):
媽媽?zhuān)骸笆圬泦T同志,請(qǐng)幫我買(mǎi)些上次梨.”
售貨員:“大媽?zhuān)洗钨I(mǎi)的那種梨都賣(mài)完了,我們還沒(méi)來(lái)得及進(jìn)貨,我建議這次您買(mǎi)些新進(jìn)的蘋(píng)果,價(jià)格比梨貴一點(diǎn),不過(guò)蘋(píng)果的營(yíng)養(yǎng)價(jià)值更高.”
媽媽?zhuān)骸昂茫銈兊姆⻊?wù)態(tài)度和服務(wù)質(zhì)量我很滿(mǎn)意,這次我照上次一樣,也買(mǎi)30元錢(qián)的蘋(píng)果吧.”回家后對(duì)照前后兩次的電腦小票,小張發(fā)現(xiàn):每千克蘋(píng)果的單價(jià)價(jià)是梨的單價(jià)的1.5倍,蘋(píng)果的重量比梨輕2.5千克.
小張根據(jù)上面的對(duì)話(huà)和發(fā)票,求出了梨和蘋(píng)果的單價(jià),你知道梨和蘋(píng)果的單價(jià)各是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com