【題目】如圖,正方形ABCD的三個(gè)頂點(diǎn)A、B、D分別在長(zhǎng)方形 EFGH的邊EF、FG、EH上,且C到HG的距離是1,到點(diǎn)H,G的距離分別為,,則正方形ABCD的面積為______.
【答案】13
【解析】
根據(jù)全等三角形的性質(zhì)定理、三角形勾股定理進(jìn)行運(yùn)算.
如圖作ML//HG,連接CH、CG、CT交HG于點(diǎn)T.
∠ADC=90°,且∠EDH=180°,
∠DAE+∠FAB=90°,
在直角△EAD中,∠EAD+∠EDA=90°,
∠EAD=∠FBA.
在直角△ABF中,
∠AFB=∠EDA.
△ABF≌△DAE.
同理可得△ABF≌△DAE≌△BLC≌△DMC,
CH=CG=,在△HCG中,
由勾股定理得HG=,CT=1,
同理可得TH=2,且ML//HG,
CT=MH=1,HT=CM,=2,
△ABF≌△DAE≌△BLC≌△DMC,
DM=CL=3
SABCD=SFLME-4S△DMC=15- 314=13
故答案為13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)÷-×+; (2)--( -2);
(3)(2-)2017×(2+)2016-2-(-)0 (4)(a+2+b)÷(+)-(-).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.
(1)求2A﹣3B;
(2)若A+2B的值與a的取值無(wú)關(guān),求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2+2x﹣1.
(1)寫出它的頂點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大;
(3)求出圖象與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過(guò)點(diǎn)D分別向AB、AC引垂線,垂足分別為點(diǎn)E、F.
(1)如圖①,當(dāng)點(diǎn)D在BC的什么位置時(shí),DE=DF?并證明;
(2)在滿足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?請(qǐng)寫出所有的全等三角形(不必證明);
(3)如圖②,過(guò)點(diǎn)C作AB邊上的高CG,請(qǐng)問(wèn)DE、DF、CG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如下表所示:
A | B | |
進(jìn)價(jià)(萬(wàn)元/套) | 1.5 | 1.2 |
售價(jià)(萬(wàn)元/套) | 1.65 | 1.4 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種教學(xué)設(shè)備若干套,共需66萬(wàn)元,全部銷售后可獲毛利潤(rùn)9萬(wàn)元。
(毛利潤(rùn)=(售價(jià) - 進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購(gòu)進(jìn)這兩種教學(xué)設(shè)備的總資金不超過(guò)69萬(wàn)元,問(wèn)A種設(shè)備購(gòu)進(jìn)數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩船從港口A同時(shí)出發(fā),甲船以每小時(shí)30海里的速度向北偏東35°方向航行,乙船以每小時(shí)40海里的速度向另一方向航行,1小時(shí)后,甲船到達(dá)C島,乙船達(dá)到B島,若C、B兩島相距50海里,則乙船的航行方向?yàn)槟掀珫|多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC為等腰三角形,O是底邊BC的中點(diǎn),腰AB與⊙O相切于D點(diǎn). 求證:AC是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com