【題目】某學(xué)校準(zhǔn)備開(kāi)展“陽(yáng)光體育活動(dòng)”,決定開(kāi)設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題.
(1)這次活動(dòng)一共調(diào)查了________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;
(4)若該學(xué)校有1000人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.
【答案】(1)250;(2)補(bǔ)圖見(jiàn)解析;(3)108°;(4)160人.
【解析】
(1)直接利用足球人數(shù)÷所占百分比=總?cè)藬?shù),即可得出答案;
(2)首先求出籃球人數(shù)進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;
(3)利用(2)中所求,得出所占百分比進(jìn)而得出答案;
(4)利用乒乓球所占百分比進(jìn)而估計(jì)總?cè)藬?shù)即可.
(1)由題意:80÷32%=250(人),
答:總共有250名學(xué)生;
(2)籃球人數(shù):250-80-40-55=75(人),
如圖所示:
(3)依題意得:×360°=108°;
答:選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角為108°;
(4)依題意得:1000×=160(人),
答:該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)大約為160人;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn) A作AG⊥BD分別交BD、BC于點(diǎn)G、E.
(1)求證:BE2=EGEA;
(2)連接CG,若BE=CE,求證:∠ECG=∠EAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將自然數(shù)按以下規(guī)律排列:
表中數(shù)2在第二行第一列,與有序數(shù)對(duì)(2,1)對(duì)應(yīng),數(shù)5與(1,3)對(duì)應(yīng),數(shù)14與(3,4)對(duì)應(yīng),根據(jù)這一規(guī)律,數(shù)2014對(duì)應(yīng)的有序數(shù)對(duì)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A、B以及直線l,AE⊥l,垂足為點(diǎn)E.
(1)尺規(guī)作圖:①過(guò)點(diǎn)B作BF⊥l,垂足為點(diǎn)F
②在直線l上求作一點(diǎn)C,使CA=CB;(要求:在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法)
(2)在所作的圖中,連接CA、CB,若∠ACB=90°,∠CAE=,則∠CBF= (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王小方開(kāi)了一家服裝店,專賣羽絨服,下表是去年一年各月的銷售量情況:
月份 | 一 | 二 | 三 | 四 | 五 | 六 |
銷售量/件 | 120 | 90 | 40 | 10 | 6 | 4 |
月份 | 七 | 八 | 九 | 十 | 十一 | 十二 |
銷售量/件 | 3 | 5 | 3 | 120 | 80 | 120 |
(1)計(jì)算各季度的銷售量,并用一幅合適的統(tǒng)計(jì)圖表示;
(2)計(jì)算各季度的銷售量在全年銷售量中所占的百分比(精確到1%),并用適當(dāng)?shù)慕y(tǒng)計(jì)圖表示;
(3)用一幅合適的統(tǒng)計(jì)圖表示各季度銷售量的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“構(gòu)造圖形解題”,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:
實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由
S四邊形ABCD=S△ABC+S△ADE+S△ABE得,化簡(jiǎn)得:
實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:
畫Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜邊AB上截取BD=,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)
請(qǐng)根據(jù)以上閱讀材料回答下面的問(wèn)題:
(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是
(2)如圖2,若2和-8是關(guān)于x的方程x2+6x=16的兩個(gè)根,按照實(shí)例二的方式構(gòu)造Rt△ABC,連接CD,求CD的長(zhǎng);
(3)若x,y,z都為正數(shù),且x2+y2=z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:在邊長(zhǎng)為的正方形中,對(duì)角線、交于點(diǎn).
探究:如圖,若點(diǎn)是對(duì)角線上任意一點(diǎn),則線段的長(zhǎng)的取值范圍是__________;
探究:如圖,若點(diǎn)是內(nèi)任意一點(diǎn),點(diǎn)、分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時(shí), 的周長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出周長(zhǎng)的最小值,若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決:如圖,在邊長(zhǎng)為的正方形中,點(diǎn)是內(nèi)任意一點(diǎn),且,點(diǎn)、分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng)的周長(zhǎng)取到最小值時(shí),求四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,AD與CE相交于點(diǎn)P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過(guò)點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com