【題目】某學(xué)校準(zhǔn)備開(kāi)展陽(yáng)光體育活動(dòng),決定開(kāi)設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將獲得的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題.

1)這次活動(dòng)一共調(diào)查了________名學(xué)生;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于________度;

4)若該學(xué)校有1000人,請(qǐng)你估計(jì)該學(xué)校選擇乒乓球項(xiàng)目的學(xué)生人數(shù)約是________人.

【答案】1250;(2)補(bǔ)圖見(jiàn)解析;(3108°;(4)160人.

【解析】

1)直接利用足球人數(shù)÷所占百分比=總?cè)藬?shù),即可得出答案;

2)首先求出籃球人數(shù)進(jìn)而補(bǔ)全條形統(tǒng)計(jì)圖;

3)利用(2)中所求,得出所占百分比進(jìn)而得出答案;

4)利用乒乓球所占百分比進(jìn)而估計(jì)總?cè)藬?shù)即可.

1)由題意:80÷32%=250(人),

答:總共有250名學(xué)生;

2)籃球人數(shù):250-80-40-55=75(人),

如圖所示:

3)依題意得:×360°=108°;

答:選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角為108°;

4)依題意得:1000×=160(人),

答:該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)大約為160人;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn) AAGBD分別交BD、BC于點(diǎn)G、E

(1)求證:BE2=EGEA;

(2)連接CG,若BE=CE,求證:∠ECG=∠EAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將自然數(shù)按以下規(guī)律排列:

表中數(shù)2在第二行第一列,與有序數(shù)對(duì)(2,1)對(duì)應(yīng),數(shù)5與(1,3)對(duì)應(yīng),數(shù)14與(3,4)對(duì)應(yīng),根據(jù)這一規(guī)律,數(shù)2014對(duì)應(yīng)的有序數(shù)對(duì)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)AB以及直線l,AEl,垂足為點(diǎn)E

(1)尺規(guī)作圖:①過(guò)點(diǎn)BBFl,垂足為點(diǎn)F

②在直線l上求作一點(diǎn)C,使CACB(要求:在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法)

(2)在所作的圖中,連接CACB,若∠ACB90°,∠CAE,則∠CBF (用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王小方開(kāi)了一家服裝店,專賣羽絨服,下表是去年一年各月的銷售量情況:

月份

銷售量/

120

90

40

10

6

4

月份

十一

十二

銷售量/

3

5

3

120

80

120

(1)計(jì)算各季度的銷售量,并用一幅合適的統(tǒng)計(jì)圖表示;

(2)計(jì)算各季度的銷售量在全年銷售量中所占的百分比(精確到1%),并用適當(dāng)?shù)慕y(tǒng)計(jì)圖表示;

(3)用一幅合適的統(tǒng)計(jì)圖表示各季度銷售量的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】構(gòu)造圖形解題,它的應(yīng)用十分廣泛,特別是有些技巧性很強(qiáng)的題目,如果不能發(fā)現(xiàn)題目中所隱含的幾何意義,而用通常的代數(shù)方法去思考,經(jīng)常讓我們手足無(wú)措,難以下手,這時(shí),如果能轉(zhuǎn)換思維,發(fā)現(xiàn)題目中隱含的幾何條件,通過(guò)構(gòu)造適合的幾何圖形,將會(huì)得到事半功倍的效果,下面介紹兩則實(shí)例:

實(shí)例一:1876年,美國(guó)總統(tǒng)伽非爾德利用實(shí)例一圖證明了勾股定理:由

S四邊形ABCD=SABC+SADE+SABE,化簡(jiǎn)得:

實(shí)例二:歐幾里得的《幾何原本》記載,關(guān)于x的方程的圖解法是:

RtABC,使∠ABC=90°,BC=AC=,再在斜邊AB上截取BD,則AD的長(zhǎng)就是該方程的一個(gè)正根(如實(shí)例二圖)

請(qǐng)根據(jù)以上閱讀材料回答下面的問(wèn)題:

(1)如圖1,請(qǐng)利用圖形中面積的等量關(guān)系,寫出甲圖要證明的數(shù)學(xué)公式是 ,乙圖要證明的數(shù)學(xué)公式是

(2)如圖2,若2-8是關(guān)于x的方程x2+6x16的兩個(gè)根,按照實(shí)例二的方式構(gòu)造RtABC,連接CD,求CD的長(zhǎng);

(3)xy,z都為正數(shù),且x2+y2z2,請(qǐng)用構(gòu)造圖形的方法求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:在邊長(zhǎng)為的正方形中,對(duì)角線、交于點(diǎn)

探究:如圖,若點(diǎn)是對(duì)角線上任意一點(diǎn),則線段的長(zhǎng)的取值范圍是__________;

探究:如圖,若點(diǎn)內(nèi)任意一點(diǎn),點(diǎn)、分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時(shí), 的周長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出周長(zhǎng)的最小值,若不存在,請(qǐng)說(shuō)明理由;

問(wèn)題解決:如圖,在邊長(zhǎng)為的正方形中,點(diǎn)內(nèi)任意一點(diǎn),且,點(diǎn)、分別是邊和對(duì)角線上的兩個(gè)動(dòng)點(diǎn),則當(dāng)的周長(zhǎng)取到最小值時(shí),求四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,CE是△ABC的高,ADCE相交于點(diǎn)P,∠BAC=66°,∠BCE=40°,求∠ADC和∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙OADBC,垂足為D

1)如圖1, BDDC,求∠B的度數(shù);

2)如圖2,BEAC,垂足為E,BEAD于點(diǎn)F過(guò)點(diǎn)BBGAD交⊙O于點(diǎn)G,AB邊上取一點(diǎn)H,使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案