【題目】如圖,、、的平分線交于.
(1)是什么角?(直接寫結(jié)果)
(2)如圖2,過點(diǎn)的直線交射線于點(diǎn),交射線于點(diǎn),觀察線段,你有何發(fā)現(xiàn)?并說明理由.
(3)如圖2,過點(diǎn)的直線交射線于點(diǎn),交射線于點(diǎn),求證:;
(4)如圖3,過點(diǎn)的直線交射線的反向延長(zhǎng)線于點(diǎn),交射線于點(diǎn),,,,求的面積.
【答案】(1)直角;(2)DE=CE,理由見解析;(3)理由見解析;(4)8.
【解析】
(1)根據(jù)兩直線平行同旁內(nèi)角互補(bǔ)可得∠BAM+∠ABN=180°,然后由角平分線的定義可證∠BAE+∠ABE=90°,進(jìn)而可得∠AEB=90°;
(2)過點(diǎn)E作EF⊥AM,交AM與F,交BN于H,作EG⊥AB于G.由角平分線的性質(zhì)可證EF=EH,然后根據(jù)“AAS”證明△CEF≌△DEH即可;
(3)在AB上截取AF=AC,連接EF,可證△ACE≌△AFE,得到∠AEC=∠AEF,進(jìn)而證出∠FEB=∠DEB,然后再證明△BFE≌△BDE,可得結(jié)論;
(4)延長(zhǎng)AE交BD于F,由三線合一可知AB=BF=5,AE=EF,根據(jù)“AAS” 證明△ACE≌△FDE,可得DF=AC=3,設(shè)S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根據(jù)S△ABE﹣S△ACE=2,求出x的值,進(jìn)而可求出△BDE的面積.
解:(1)∵AM//BN,
∴∠BAM+∠ABN=180°,
∵AE平分∠BAM,BE平分∠ABN,
∴∠BAE=BAM,∠ABE=∠ABN,
∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,
∴∠AEB=90°;
(2)如圖,過點(diǎn)E作EF⊥AM,交AM與F,交BN于H,作EG⊥AB于G.
∵AE平分∠BAM,BE平分∠ABN,
∴EF=EG=EH.
∵AM//BN,
∴∠CFE=∠EHD.
在△CEF和△DEH中,
∵∠CFE=∠DHE=90°,
∠CFE=∠EHD,
EF=EH,
∴△CEF≌△DEH,
∴DE=CE;
(3)在AB上截取AF=AC,連接EF,
在△ACE與△AFE中,
,
∴△ACE≌△AFE,
∴∠AEC=∠AEF,
∵∠AEB=90°,
∴∠AEF+∠BEF=∠AEC+∠BED=90°,
∴∠FEB=∠DEB,
在△BFE與△BDE中,
,
∴△BFE≌△BDE,
∴BF=BD,
∵AB=AF+BF,
∴AC+BD=AB;
(4)延長(zhǎng)AE交BD于F,
∵∠AEB=90°,
∴BE⊥AF,
∵BE平分∠ABN,
∴AB=BF=5,AE=EF,
∵AM//BN,
∴∠C=∠EDF,
在△ACE與△FDE中,
,
∴△ACE≌△FDE,
∴DF=AC=3,
∵BF=5,
∴設(shè)S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,
∵S△ABE﹣S△ACE=2,
∴5x﹣3x=2,
∴x=1,
∴△BDE的面積=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,
點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車開往距離出發(fā)地的目的地,出發(fā)后第一小時(shí)內(nèi)按原計(jì)劃的速度勻速行駛,一小時(shí)后以原來速度的1.5倍勻速行駛,并比原計(jì)劃提前到達(dá)目的地,設(shè)前一個(gè)小時(shí)的行駛速度為
(1)直接用的式子表示提速后走完剩余路程的時(shí)間為
(2)求汽車實(shí)際走完全程所花的時(shí)間.
(3)若汽車按原路返回,司機(jī)準(zhǔn)備一半路程以的速度行駛,另一半路程以的速度行駛(),朋友提醒他一半時(shí)間以的速度行駛,另一半時(shí)間以的速度行駛更快,你覺得誰的方案更快?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“軍運(yùn)會(huì)”期間,某紀(jì)念品店老板用5000元購進(jìn)一批紀(jì)念品,由于深受顧客喜愛,很快售完,老板又用6000元購進(jìn)同樣數(shù)目的這種紀(jì)念品,但第二次每個(gè)進(jìn)價(jià)比第一次每個(gè)進(jìn)價(jià)多了2元.
(1)求該紀(jì)念品第一次每個(gè)進(jìn)價(jià)是多少元?
(2)老板以每個(gè)15元的價(jià)格銷售該紀(jì)念品,當(dāng)?shù)诙渭o(jì)念品售出時(shí),出現(xiàn)了滯銷,于是決定降價(jià)促銷,若要使第二次的銷售利潤(rùn)不低于900元,剩余的紀(jì)念品每個(gè)售價(jià)至少要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN與∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點(diǎn),則以下結(jié)論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長(zhǎng)不變,其中正確的個(gè)數(shù)為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測(cè)量河對(duì)岸l1上兩棵古樹A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( )
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了美化校園環(huán)境,計(jì)劃購進(jìn)桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調(diào)查了解到:若購進(jìn)15棵桂花樹和6棵黃桷樹共需600元,若購進(jìn)12棵桂花樹和5棵黃桷樹共需490元.
(1)求購進(jìn)的桂花樹和黃桷樹的單價(jià)各是多少元?
(2)已知甲、乙兩個(gè)苗圃的兩種樹苗銷售價(jià)格和上述價(jià)格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設(shè)購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個(gè)苗圃中購買樹苗所需總費(fèi)用,求出y1和y2關(guān)于x的函數(shù)表達(dá)式;
(3)現(xiàn)在,學(xué)校根據(jù)實(shí)際需要購買的黃桷樹的棵數(shù)不少于35棵且不超過40棵,請(qǐng)?jiān)O(shè)計(jì)一種購買方案,使購買的樹苗所花費(fèi)的總費(fèi)用最少.最少費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥DA于Q.
(1)求∠BPQ的度數(shù);
(2)若PQ=3,EP=1,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機(jī)抽取2張,抽出的卡片上的數(shù)字恰好是兩個(gè)連續(xù)整數(shù)的概率是__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com