【題目】某玩具商店以每件60元為成本購進(jìn)一批新型玩具,以每件100元的價(jià)格銷售則每天可賣出20件,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商店決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn):若每件玩具每降價(jià)1元,則每天可多賣2.

(1)若商店打算每天盈利1200元,每件玩具的售價(jià)應(yīng)定為多少元?

(2)若商店為追求效益最大化,每件玩具的售價(jià)定為多少元時(shí),商店每天盈利最多?最多盈利多少元?

【答案】(1)每件玩具的售價(jià)為80元;(2)每件玩具的售價(jià)為85元時(shí),每天盈利最多,最多盈利1250.

【解析】

1)根據(jù)題意,可以得到關(guān)于x的一元二次方程,從而可以解答本題;

2)根據(jù)題意可以得到利潤與售價(jià)的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.

解:(1)設(shè)每件玩具的售價(jià)為元,

,解得:,,

擴(kuò)大銷售,增加盈利,盡快減少庫存,

答:每件玩具的售價(jià)為80元;

(2)設(shè)每件玩具的售價(jià)為元時(shí),利潤為元,

,

即當(dāng)時(shí),有最大值為1250元,

答:當(dāng)每件玩具的售價(jià)為85元時(shí),商店每天盈利最多,最多盈利1250.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=60°,OF平分∠MON,點(diǎn)A在射線OM上, P,Q是射線ON上的兩動(dòng)點(diǎn),點(diǎn)P在點(diǎn)Q的左側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交OMOF,ON于點(diǎn)D,BC,連接AB,PB

1)依題意補(bǔ)全圖形;

2)判斷線段 ABPB之間的數(shù)量關(guān)系,并證明;

3)連接AP,設(shè),當(dāng)PQ兩點(diǎn)都在射線ON上移動(dòng)時(shí),是否存在最小值?若存在,請直接寫出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),對稱軸為.直線的圖象與二次函數(shù)的圖象交于點(diǎn)和點(diǎn)(點(diǎn)在點(diǎn)的左側(cè))

1)求的值及直線解析式;

2)若過點(diǎn)的直線平行于直線且直線與二次函數(shù)圖象只有一個(gè)交點(diǎn),求交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,4).點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿x軸向點(diǎn)O運(yùn)動(dòng);點(diǎn)Q從點(diǎn)O同時(shí)出發(fā),以相同的速度沿x軸的正方向運(yùn)動(dòng),規(guī)定點(diǎn)P到達(dá)點(diǎn)O時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接BP,過P點(diǎn)作BP的垂線,與過點(diǎn)Q平行于y軸的直線l相交于點(diǎn)D.BDy軸交于點(diǎn)E,連接PE.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s)

(1)PBD的度數(shù)為 ,點(diǎn)D的坐標(biāo)為 (t表示);

(2)當(dāng)t為何值時(shí),PBE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線.

1)當(dāng)時(shí),

拋物線的對稱軸為________;

若在拋物線上有兩點(diǎn),且,則的取值范圍是________

2)拋物線的對稱軸與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對稱,將點(diǎn)向右平移3個(gè)單位得到點(diǎn),若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是經(jīng)過已知直線外一點(diǎn)作這條直線的垂線的尺規(guī)作圖過程.

已知:直線和直線外一點(diǎn).

求作:直線的垂線,使它經(jīng)過.

作法:如圖2.

1)在直線上取一點(diǎn),連接;

2)分別以點(diǎn)和點(diǎn)為圓心,大于的長為半徑作弧,兩弧相交于,兩點(diǎn),連接于點(diǎn);

3)以點(diǎn)為圓心,為半徑作圓,交直線于點(diǎn)(異于點(diǎn)),作直線.所以直線就是所求作的垂線.

請你寫出上述作垂線的依據(jù):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的正方形在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)是邊的中點(diǎn),連接,點(diǎn)在第一象限,且,.以直線為對稱軸的拋物線過,兩點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)從點(diǎn)出發(fā),沿射線每秒1個(gè)單位長度的速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.過點(diǎn)于點(diǎn),當(dāng)為何值時(shí),以點(diǎn),,為頂點(diǎn)的三角形與相似?

3)點(diǎn)為直線上一動(dòng)點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn),,使得以點(diǎn),,為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東坡商貿(mào)公司購進(jìn)某種水果成本為20/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(jià)(元/)與時(shí)間(天)之間的函數(shù)關(guān)系式為整數(shù),且其日銷售量()與時(shí)間(天)的關(guān)系如下表:

時(shí)間(天)

1

3

6

10

20

日銷售量

118

114

108

100

80

1)已知之間的變化符合一次函數(shù)關(guān)系,試求在第30天的日銷售量;

2)哪一天的銷售利潤最大?最大日銷售利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市市民上班時(shí)常用交通工具的狀況,某課題小組隨機(jī)調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的尚不完整的統(tǒng)計(jì)圖:

根據(jù)以上統(tǒng)計(jì)圖,解答下列問題:

1)本次接受調(diào)查的市民共有  人;

2)扇形統(tǒng)計(jì)圖中,扇形B的圓心角度數(shù)是  ;

3)請補(bǔ)全條形統(tǒng)計(jì)圖;

4)若該市“上班族”約有15萬人,請估計(jì)乘公交車上班的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案