【題目】將長為1,寬為的長方形紙片如圖那樣折一下,剪下一個邊長等于長方形的寬度的正方形稱為第一次操作;再把剩下的長方形如圖那樣折一下,剪下一個邊長等于此時長方形寬度的正方形稱為第二次操作;如些反復操作下去,若在第次操作后剩下的長方形為正方形,則操作終止.

第一次操作后,剩下的長方形兩邊長分別為______ ;用含的代數(shù)式表示

若第二次操作后,剩下的長方形恰好是正方形,則求的值,寫出解答過程;

若第三次操作后,剩下的長方形恰好是正方形,畫出圖形,試求的值。

【答案】(2);(3).

【解析】

1)經(jīng)過第一次操作后可知剩下的長方形一邊長為a,另一邊長為1-a;

2)若第二次操作后,剩下的長方形恰好是正方形,則第一次操作后剩下的長方形的的長為寬的2倍,由此可得一元一次方程,即可進行求解;

3)若第三次操作后,剩下的長方形恰好是正方形,則第二次操作后剩下的長方形的的長為寬的2倍,由此可得一元一次方程,即可進行求解.

解:(1)經(jīng)過第一次操作后可知剩下的長方形一邊長為a,另一邊長為1-a;

若第二次操作后,剩下的長方形恰好是正方形,

,

解得:(舍去)
若第三次操作后,剩下的長方形恰好是正方形,如圖所示,

,

解得:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.
其中正確的結論有( )

A. 5個 B. 4個

C. 3個 D. 2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中, A、B兩點分別在x軸、y軸的正半軸上,且OB = OA=3.(1)、求點AB的坐標;(2)、已知點C(-2,2),求△BOC的面積;(3)、點P是第一象限角平分線上一點,若,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A,B兩點分別在x軸和y軸上,OA=1,OB= ,連接AB,過AB中點C1分別作x軸和y軸的垂線,垂足分別是點A1、B1 , 連接A1B1 , 再過A1B1中點C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點Cn的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學決定在學生中開展丟沙包、打籃球、跳大繩和踢毽球四種項目的活動,為了解學生對四種項目的喜歡情況,隨機調查了該校m名學生最喜歡的一種項目(每名學生必選且只能選擇四種活動項目的一種),并將調查結果繪制成如下的不完整的統(tǒng)計圖表:
學生最喜歡的活動項目的人數(shù)統(tǒng)計表

項目

學生數(shù)(名)

百分比

丟沙包

20

10%

打籃球

60

p%

跳大繩

n

40%

踢毽球

40

20%


根據(jù)圖表中提供的信息,解答下列問題:
(1)m= , n= , p=;
(2)請根據(jù)以上信息直接補全條形統(tǒng)計圖;
(3)根據(jù)抽樣調查結果,請你估計該校2000名學生中有多少名學生最喜歡跳大繩.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知∠BDC=EFD,∠AED=∠ACB

1)試判斷∠DEF與∠B的大小關系,并說明理由;

2)若D、EF分別是AB、ACCD邊上的中點,SDEF=4,求SABC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

(其中a、b、m、n均為整數(shù)),則有.

.這樣小明就找到了一種把類似的式子化為平方式的方法。

請你仿照小明的方法探索并解決下列問題:(a,b,m,n均為正整數(shù))

(1),用含m、n的式子分別表示a、b,得:a=___,b=___;

(2)當a=7,n=1時,填空:7+ =( +2

(3)若,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一蓄水池有水40m3,按一定的速度放水,水池里的水量y (m3)與放水時間t()有如下關系:

放水時間()

1

2

3

4

...

水池中水量(m)

38

36

34

32

...

下列結論中正確的是

A. yt的增加而增大B. 放水時間為15分鐘時,水池中水量為8m3

C. 每分鐘的放水量是2m3D. yt之間的關系式為y=38-2t

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點E(3,4).

(1)求反比例函數(shù)的解析式;

(2)反比例函數(shù)的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標;

(3)連接OF,OE,探究AOFEOC的數(shù)量關系,并證明.

查看答案和解析>>

同步練習冊答案