【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點(diǎn)E(3,4).

(1)求反比例函數(shù)的解析式;

(2)反比例函數(shù)的圖象與線段BC交于點(diǎn)D,直線過點(diǎn)D,與線段AB相交于點(diǎn)F,求點(diǎn)F的坐標(biāo);

(3)連接OF,OE,探究AOFEOC的數(shù)量關(guān)系,并證明.

【答案】(1)y=;(2)(2,4).(3)AOF=EOC見解析

【解析】

試題分析:(1)設(shè)反比例函數(shù)的解析式為y=,把點(diǎn)E(3,4)代入即可求出k的值,進(jìn)而得出結(jié)論;

(2)由正方形AOCB的邊長為4,故可知點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.由于點(diǎn)D在反比例函數(shù)的圖象上,所以點(diǎn)D的縱坐標(biāo)為3,即D(4,3),由點(diǎn)D在直線y=﹣x+b上可得出b的值,進(jìn)而得出該直線的解析式,再把y=4代入直線的解析式即可求出點(diǎn)F的坐標(biāo);

(3)在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點(diǎn)H,由全等三角形的判定定理可知OAF≌△OCG,EGB≌△HGC(ASA),故可得出EG=HG.設(shè)直線EG的解析式為y=mx+n,把E(3,4),G(4,2)代入即可求出直線EG的解析式,故可得出H點(diǎn)的坐標(biāo),在RtAOF中,AO=4,AE=3,根據(jù)勾股定理得OE=5,可知OH=OE,即OG是等腰三角形底邊EF上的中線.所以O(shè)G是等腰三角形頂角的平分線,由此即可得出結(jié)論.

解:(1)設(shè)反比例函數(shù)的解析式y(tǒng)=,

反比例函數(shù)的圖象過點(diǎn)E(3,4),

4=,即k=12.

反比例函數(shù)的解析式y(tǒng)=

(2)正方形AOCB的邊長為4,

點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.

點(diǎn)D在反比例函數(shù)的圖象上,

點(diǎn)D的縱坐標(biāo)為3,即D(4,3).

點(diǎn)D在直線y=﹣x+b上,

3=×4+b,解得b=5.

直線DF為y=﹣x+5,

將y=4代入y=﹣x+5,得4=﹣x+5,解得x=2.

點(diǎn)F的坐標(biāo)為(2,4).

(3)AOF=EOC

證明:在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點(diǎn)H.

AO=CO=4,OAF=OCG=90°,AF=CG=2,

∴△OAF≌△OCG(SAS).

∴∠AOF=COG

∵∠EGB=HGCB=GCH=90°,BG=CG=2,

∴△EGB≌△HGC(ASA).

EG=HG

設(shè)直線EG:y=mx+n,

E(3,4),G(4,2),

,解得,

直線EG:y=﹣2x+10.

令y=﹣2x+10=0,得x=5.

H(5,0),OH=5.

在RtAOE中,AO=4,AE=3,根據(jù)勾股定理得OE=5.

OH=OE

OG是等腰三角形底邊EH上的中線.

OG是等腰三角形頂角的平分線.

∴∠EOG=GOH.

∴∠EOG=GOC=AOF,即AOF=EOC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)的年齡比媽媽小33歲,今年媽媽的年齡正好是小強(qiáng)的4倍,小強(qiáng)今年的年齡是

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點(diǎn)B逆時針旋轉(zhuǎn)40°,得到A′B′C′,若點(diǎn)C′恰好落在邊BA的延長線上,且A′C′BC,連接CC′,則ACC′= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4分別交x軸,y軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.

(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);

(2)動點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個單位長度的速度向終點(diǎn)D運(yùn)動;同時,動點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個單位長度的速度向終點(diǎn)O運(yùn)動,過點(diǎn)P作PHOA,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動時間為t秒.

①若NPH的面積為1,求t的值;

②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問BP+PH+HQ是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若2x+y=3,則4x·2y=_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-2a(3a-4b)= _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:a+b=-3,ab=2,求下列各式的值:

(1)a2b+ab2;(2)a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】各邊長都是整數(shù),且最大邊長為8的三角形共有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式4x2﹣100=

查看答案和解析>>

同步練習(xí)冊答案