【題目】如圖,AB為⊙O的直徑,C、F為⊙O上兩點,且點C為弧BF的中點,過點C作AF的垂線,交AF的延長線于點E,交AB的延長線于點D.
(1)求證:DE是⊙O的切線;
(2)如果半徑的長為3,tanD=,求AE的長.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連接OC,如圖,由弧BC=弧CF得到∠BAC=∠FAC,加上∠OCA=∠OAC.則∠OCA=∠FAC,所以OC∥AE,從而得到OC⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;
(2)先在Rt△OCD中利用正切定義計算出CD=4,再利用勾股定理計算出OD=5,則sinD=,然后在Rt△ADE中利用正弦的定義可求出AE的長.
試題解析:解:(1)連接OC,如圖.∵點C為弧BF的中點,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切線;
(2)在Rt△OCD中,∵tanD=,OC=3,∴CD=4,∴OD==5,∴AD=OD+AO=8.在Rt△ADE中,∵sinD=,∴AE=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位…,依此規(guī)律跳動下去,點P第2019次跳動至點P2019的坐標是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】身高1.65米的兵兵在建筑物前放風箏,風箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點B處,風箏掛在建筑物上方的樹枝點G處(點G在FE的延長線上).經(jīng)測量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風箏所在點G與建筑物頂點D及風箏線在手中的點A在同一條直線上,點A距地面的高度AB=1.4米,風箏線與水平線夾角為37°.
(1)求風箏距地面的高度GF;
(2)在建筑物后面有長5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計算說明:若兵兵充分利用梯子和一根米長的竹竿能否觸到掛在樹上的風箏?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組的同學進行社會實踐活動時,想利用所學的解直角三角形的知識測量某塔的高度,他們先在點用高米的測角儀測得塔頂的仰角為,然后沿方向前行m到達點處,在處測得塔頂的仰角為.請根據(jù)他們的測量數(shù)據(jù)求此塔的高.(結(jié)果精確到m,參考數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線AB∥CD.
(1)如圖1,直接寫出∠ABE,∠CDE和∠BED之間的數(shù)量關(guān)系是 .
(2)如圖2,BF,DF分別平分∠ABE,∠CDE,那么∠BFD和∠BED有怎樣的數(shù)量關(guān)系?請說明理由.
(3)如圖3,點E在直線BD的右側(cè),BF,DF仍平分∠ABE,∠CDE,請直接寫出∠BFD和∠BED的數(shù)量關(guān)系 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)在數(shù)軸上表示下列各數(shù):0,–2.5,,–2,+5,.
(2)將上列各數(shù)用“<”連接起來:___________ _____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.
(1)求證:此方程總有兩個實數(shù)根;
(2)若此方程有一個根大于0且小于1,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里.
﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,
(1)正數(shù)集合:{ …};
(2)負數(shù)集合:{ …};
(3)整數(shù)集合:{ …};
(4)分數(shù)集合:{ …}.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com