【題目】如下圖,在平面直角坐標系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位…,依此規(guī)律跳動下去,點P第2019次跳動至點P2019的坐標是_________.
【答案】(-505,1010).
【解析】
解決本題的關鍵是根據(jù)圖形,寫出各點坐標,利用具體數(shù)值分析出題目的規(guī)律,再進一步解答.注意到第奇數(shù)次都是向上跳一個單位,而偶數(shù)次跳的次數(shù)也是有規(guī)律的.
由題中規(guī)律可得出如下結論:設點Pm的橫坐標的絕對值是n,
則在y軸右側的點的下標分別是4(n1)和4n3,
在y軸左側的點的下標是:4n2和4n1;
∵2019=505×4-1,2020=4×(506-1),
∴點P2019的橫坐標為-505.
∵點P1和點P2的縱坐標均為1,點P3和點P4的縱坐標均為2,點P5和點P6的縱坐標均為3,
因此可以推出,點P2019和點P2020的縱坐標均為2020÷2=1010,
∴點P第2019次跳動至點P2019的坐標是(-505,1010).
故答案為:(-505,1010).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】證明命題“角的平分線上的點到角的兩邊的距離相等”,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小明同學根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.
已知:如圖,OC是∠AOB的角平分線,點 P 在 OC 上, 求證: .
(要求:請你補全已知和求證,并寫出證明過程.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒3個單位,設運動的時間為t秒.
(1)當t= 時,CP把△ABC的面積分成相等的兩部分;
(2)當t=5時,CP把△ABC分成的兩部分面積之比是= .
(3)若△BPC的面積為18,試求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)當PA+PB的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(0,a),B(0,b),C(m,b)且(a-4)2+|b+3|=0,S△ABC=14。
(1)求C點的坐標
(2)作DE⊥DC交y軸于E點,EF為∠AED的平分線,且∠DFE=90o。求證:FD平分∠ADO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、F為⊙O上兩點,且點C為弧BF的中點,過點C作AF的垂線,交AF的延長線于點E,交AB的延長線于點D.
(1)求證:DE是⊙O的切線;
(2)如果半徑的長為3,tanD=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com