【題目】如圖,在□ABCD中,點E,F分別在邊DC,AB上,DE=BF,把平行四邊形沿直線EF折疊,使得點B,C分別落在點B′,C′處,線段EC′與線段AF交于點G,連接DG,B′G。
求證:(1)∠1=∠2 (2)DG=B′G
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校數(shù)學(xué)興趣小組利用機器人開展數(shù)學(xué)活動.在相距個單位長度的直線跑道上,機器人甲從端點出發(fā),勻速往返于端點、之間,機器人乙同時從端點出發(fā),以大于甲的速度勻速往返于端點、之間.他們到達(dá)端點后立即轉(zhuǎn)身折返,用時忽略不計.興趣小組成員探究這兩個機器人迎面相遇的情況,這里的“迎面相遇”包括面對面相遇、在端點處相遇這兩種.
(觀察)
①觀察圖,若這兩個機器人第一次迎面相遇時,相遇地點與點之間的距離為個單位長度,則他們第二次迎面相遇時,相遇地點與點之間的距離為 _____個單位長度;
②若這兩個機器人第一次迎面相遇時,相遇地點與點之間的距離為個單位長度,則他們第二次迎面相遇時,相遇地點與點之間的距離為 _____個單位長度;
(發(fā)現(xiàn))
設(shè)這兩個機器人第一次迎面相遇時,相遇地點與點之間的距離為個單位長度,他們第二次迎面相遇時,相遇地點與點之間的距離為個單位長度.興趣小組成員發(fā)現(xiàn)了與的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段,不包括點,如圖所示).
①= _____;
②分別求出各部分圖象對應(yīng)的函數(shù)表達(dá)式,并在圖中補全函數(shù)圖象;
(拓展)
設(shè)這兩個機器人第一次迎面相遇時,相遇地點與點之間的距離為個單位長度,他們第三次迎面相遇時,相遇地點與點之間的距離為個單位長度.若這兩個機器人第三次迎面相遇時,相遇地點與點之間的距離不超過個單位長度,則他們第一次迎面相遇時,相遇地點與點之間的距離的取值范圍是 _____.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表,是池州市今年“五一”這周內(nèi)日最高氣溫的統(tǒng)計表,關(guān)于這7天的日最高氣溫的眾數(shù),中位數(shù),方差分別是:( 。
日期 | 29日 | 30日 | 5月1日 | 2日 | 3日 | 4日 | 5日 |
日最高氣溫 | 16°C | 19°C | 22°C | 24°C | 26°C | 24°C | 23°C |
A. 24,23,10B. 24,23,C. 24,22,10D. 24,22,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從小明和小亮兩名運動員中挑出一人參加立定跳遠(yuǎn)比賽,學(xué)校記錄了二人在最近的6次立定跳遠(yuǎn)選拔賽中的成績(單位:cm),并進(jìn)行整理、描述和分析.下面給出了部分信息.
a.如圖
b.小亮最近6次選拔賽成績?nèi)缦拢?/span>
250 | 254 | 260 | 271 | 255 | 240 |
c.小明和小亮最近6次選拔賽中成績的平均數(shù)、中位數(shù)、方差如下:
平均數(shù) | 中位數(shù) | 方差 | |
小明 | 252 | 252.5 | 129.7 |
小亮 | 255 | m | 88.7 |
根據(jù)以上信息,回答下列問題:
(1)m= ;
(2)歷屆比賽表明:成績達(dá)到266cm就有可能奪冠,成績達(dá)到270cm就能打破紀(jì)錄(積分加倍),根據(jù)這6次選拔賽成績,你認(rèn)為應(yīng)選 (填“小明”或“小亮”)參加這項比賽,理由是 .(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為3cm,動點P從點A出發(fā),以每秒1cm的速度,沿A→B→C的方向運動,到達(dá)點C時停止,設(shè)運動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖像大致為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標(biāo)為(8,6),以A為圓心,任意長為半徑畫弧,分別交AC、AO于點M、N,再分別以M、N為圓心,大于MN長為半徑畫弧兩弧交于點Q,作射線AQ交y軸于點D,則點D的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某戶外看臺的截面圖,長10m的看臺AB與水平地面AP的夾角為35°,與AP平行的平臺BC長為1.9m,點F是遮陽棚DE上端E正下方在地面上的一點,測得AF=2m,在擋風(fēng)墻CD的點D處測得點E的仰角為26°,求遮陽棚DE的長. (參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82, sin26°≈0.44,cos26°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)(3-x)2+x 2=9 (2) (2x-1) 2 +(1-2x)-6=0 (3) (x1) =(1-x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用兩面靠墻(墻足夠長),用總長度37米的籬笆(圖中實線部分)圍成一個矩形雞舍ABCD,且中間共留三個1米的小門,設(shè)籬笆BC長為x米.
(1)AB=______.(用含x的代數(shù)式表示)
(2)若矩形雞舍ABCD 面積為150平方米,求籬笆BC的長.
(3)矩形雞舍ABCD面積是否有可能達(dá)到210平方米?若有可能,求出相應(yīng)x的值;若不可能,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com