【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2).
(1)直接寫求∠BAO的度數(shù);
(2)如圖1,將△AOB繞點(diǎn)O順時(shí)針得△A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)△AB′O的面積為S1,△BA′O的面積為S2,S1與S2有何關(guān)系?為什么?
(3)若將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.
【答案】(1)∠BAO=60°;(2)S1=S2;理由見(jiàn)解析;(3)S1=S2不發(fā)生變化;證明見(jiàn)解析.
【解析】
(1)先求出OA,OB,再用銳角三角函數(shù)即可得出結(jié)論;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)和直角三角形的性質(zhì)可證得OA'=AA'=AO=A'B,然后根據(jù)等邊△AOA'的邊AO、AA'上的高相等,即可得到S1=S2;
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后利用“角角邊”證明△AON和△A'OM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AN=A'M,然后利用等底等高的三角形的面積相等證明.
解:(1)∵A(2,0),B(0,),
∴OA=2,OB=,
在Rt△AOB中,tan∠BAO=,
∴∠BAO=60°;
(2)S1=S2;
理由:∵∠BAO=60°,∠AOB=90°,
∴∠ABO=30°,
∴OA'=OA=AB,△AOA'是等邊三角形,
∴OA'=AA'=AO=A'B,
∵∠B'A'O=60°,∠A'OA=60°,
∴B'A'∥AO,
根據(jù)等邊三角形的性質(zhì)可得,△AOA'的邊AO、AA'上的高相等,即△AB′O中AO邊上高和△BA′O中BA′邊上的高相等,
∴△BA'O的面積和△AB'O的面積相等(等底等高的三角形的面積相等),
即S1=S2;
(3)S1=S2不發(fā)生變化;
理由:如圖,過(guò)點(diǎn)A'作A'M⊥OB.過(guò)點(diǎn)A作AN⊥OB'交B'O的延長(zhǎng)線于N,
∵△A'B'O是由△ABO繞點(diǎn)O旋轉(zhuǎn)得到,
∴BO=OB',AO=OA',
∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,
∴∠AON=∠A'OM,
在△AON和△A'OM中,,
∴△AON≌△A'OM(AAS),
∴AN=A'M,
∴△BOA'的面積和△AB'O的面積相等(等底等高的三角形的面積相等),
即S1=S2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B是數(shù)軸上兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)是-2,點(diǎn)B對(duì)應(yīng)的數(shù)是2. △ABC是等邊三角形,D是AB中點(diǎn). 點(diǎn)M在AC邊上,且AM=3CM.
(1)求CD長(zhǎng).
(2)點(diǎn)P是CD上的動(dòng)點(diǎn),確定點(diǎn)P使得PM+PA的值最小,并求出PM+PA的最小值.
(3)過(guò)點(diǎn)M的直線與數(shù)軸交于點(diǎn)Q,且QM.點(diǎn)Q對(duì)應(yīng)的數(shù)是t,結(jié)合圖形直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;
(1)求證:AM=FM;
(2)若∠AMD=a.求證:=cosα.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第四象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在第四象限,且雙曲線始終經(jīng)過(guò)點(diǎn)C,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xoy中,直線y=x+交x軸于點(diǎn)B,交y軸于點(diǎn)A,過(guò)點(diǎn)C(1,0)作x軸的垂線l,將直線l繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°).
(1)當(dāng)直線l與直線y=x+平行時(shí),求出直線l的解析式;
(2)若直線l經(jīng)過(guò)點(diǎn)A,①求線段AC的長(zhǎng);②直接寫出旋轉(zhuǎn)角α的度數(shù);
(3)若直線l在旋轉(zhuǎn)過(guò)程中與y軸交于D點(diǎn),當(dāng)△ABD、△ACD、△BCD均為等腰三角形時(shí),直接寫出符合條件的旋轉(zhuǎn)角α的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)甲、乙兩種空調(diào)共50臺(tái).已知購(gòu)進(jìn)一臺(tái)甲種空調(diào)比購(gòu)進(jìn)一臺(tái)乙種空調(diào)進(jìn)價(jià)少0.3萬(wàn)元;用20萬(wàn)元購(gòu)進(jìn)甲種空調(diào)數(shù)量是用40萬(wàn)元購(gòu)進(jìn)乙種空調(diào)數(shù)量的2倍.請(qǐng)解答下列問(wèn)題:
(1)求甲、乙兩種空調(diào)每臺(tái)進(jìn)價(jià)各是多少萬(wàn)元?
(2)若商場(chǎng)預(yù)計(jì)投入資金不少于10萬(wàn)元,且購(gòu)進(jìn)甲種空調(diào)至少31臺(tái),商場(chǎng)有哪幾種購(gòu)進(jìn)方案?
(3)在(2)條件下,若甲種空調(diào)每臺(tái)售價(jià)1100元,乙種空調(diào)每臺(tái)售價(jià)4300元,甲、乙空調(diào)各有一臺(tái)樣機(jī)按八折出售,其余全部標(biāo)價(jià)售出,商場(chǎng)從銷售這50臺(tái)空調(diào)獲利中拿出2520元作為員工福利,其余利潤(rùn)恰好又可以購(gòu)進(jìn)以上空調(diào)共2臺(tái).請(qǐng)直接寫出該商場(chǎng)購(gòu)進(jìn)這50臺(tái)空調(diào)各幾臺(tái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,…都是等邊三角形,其邊長(zhǎng)依次為2,4,6,…,其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,…,按此規(guī)律排下去,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O、點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是( )
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com